top of page

Facility Changes That Drive 80% of Emissions Savings

The overlooked 20% of building strategies can deliver 80% of emissions savings. Here’s how to reset your 2026 baseline.

Ava Montini

Jan 6, 2026

Written by 

Published on

Tags

The 80/20 Pattern in Building Decarbonization


In business, the Pareto principle (the idea that 20% of actions create 80% of results) shows up everywhere. It also applies to the way buildings decarbonize.



Most portfolios still treat carbon reduction as a capital-projects problem: new chillers, new boilers, new equipment. These projects are visible, expensive, and easy to headline in ESG reports. But in practice, the biggest near-term gains lie in the systems that are already running every hour of every day.


According to the U.S. Energy Information Administration, space heating, cooling, and ventilation are among the top energy end-uses in commercial buildings, with ventilation alone consuming nearly 10% of the total building energy. Factor in heating and cooling, and the air systems you already own set the floor for your emissions profile. Industry surveys and guidance reinforce this point: HVAC systems consistently account for approximately 40% of energy use in commercial facilities. A share that shifts by climate zone but remains dominant across the board.


Before you buy new megawatts, make the watts you already use travel a shorter, smarter, more efficient path.


Filtration as a carbon multiplier (not a consumable line item)



Why filtration matters for energy (and CO₂e)

Filters impose a pressure drop; fans work against that resistance. Basic fan/affinity laws tell us that pressure rises with the square of fan speed, and fan power typically scales with pressure/flow requirements. Therefore, adding resistance increases fan energy unless the system compensates by reducing the flow.


On variable-speed systems that maintain flow, peer-reviewed work shows roughly linear fan-power response to added system pressure: a 10% rise in total pressure drop ≈ 10% rise in fan electric power (assumes fan and motor efficiencies roughly constant at operating point). CaEE


Field and lab studies show that higher filter resistance reduces supply airflow and can increase total power (especially as filters load), degrading cooling capacity and forcing longer runtimes. Newer research also documents the compounding effects of filter loading, with heavy clogging cutting net supply airflow by >30%, a textbook example of invisible energy waste. ScienceDirect


Moving up in MERV doesn’t automatically mean higher energy costs. Well-designed filters use optimized media and geometry (like deeper pleats or more surface area) to keep airflow resistance low. Studies have shown that these higher-efficiency filters can have a lower pressure drop than inexpensive MERV 8 pleated filters, especially when systems are properly balanced. In other words, it’s the filter’s pressure profile that matters, not just the MERV number. ScienceDirect


If you can lower your filter pressure drop while maintaining or improving capture, you directly reduce continuous fan energy. One of the few all-hours loads in many facilities. Because fans run whenever you condition or ventilate space, these savings translate cleanly into CO₂e reductions (see Section 5 for the math).


Demand-Controlled Ventilation (DCV)



What DCV does

It modulates outside-air intake based on occupancy (CO₂, people-count, scheduling) to avoid conditioning empty spaces. Codes and standards increasingly require or encourage DCV in high-occupancy areas, with ASHRAE 62.1 updates clarifying when and how ventilation turndown is permitted (including addenda that allow reduction to zero OA during verified unoccupied periods in certain space types). ASHRAE


Across building types and climates, published work shows that DCV control logic achieves ~9–33% HVAC energy savings. Advanced rooftop-unit control packages, which incorporate multi-speed/variable fans, DCV, and smarter economizer control, have delivered double-digit fan and cooling savings, sometimes exceeding 20%. Taylor & Francis Online


Lawrence Berkeley National Laboratory (LBNL) analyses flag that cost-effectiveness depends on the baseline over-ventilation and occupancy patterns; if your current minimums are already close to code, savings shrink. That’s a guidance feature, not a flaw—the point is to measure your baseline VRs before projecting benefits. Energy Technologies Area


DCV is a surgical lever: attack over-ventilation where it exists, prove reductions with trend data, and lock in permanent load reductions; especially valuable in heating-dominated regions where conditioning outside air is expensive in both energy and CO₂e. Energy Codes Guide


Preventative Maintenance


Controls drift, coils foul, dampers stick, sensors mis-calibrate—quietly taxing 5–15% of portfolio energy in many studies. Modern fault detection & diagnostics (FDD) tools and structured maintenance programs quickly recapture that waste. NREL Docs


  1. Coil fouling: Government and academic sources document material energy penalties from dirty coils; some guidance cites compressor energy up to ~30% higher with fouled condensers (case and climate dependent). Even conservative findings confirm meaningful efficiency and capacity degradation. Avoidable with routine cleaning. Energy.gov.au


  2. Economizers & OA paths: Mis-tuned economizers are common and costly; retuning and sensor QA via FDD is repeatedly highlighted in DOE/NREL/PNNL guidance as a top-tier low-cost fix. PNNL


  3. RTU controls refresh: Campaign results and tech briefs demonstrate that advanced RTU control (variable fan, DCV, and economizer optimization) consistently yields energy reductions of more than 20%, with 25–50% reductions cited in certain deployments compared to legacy constant-speed, always-open baselines. Better Buildings Solution Center


Maintenance is mitigation. It’s also Scope 3-friendly: operating equipment at design efficiency extends service life and defers replacements, reducing embodied carbon churn in your capital plan. (See the measurement plan below to make these savings auditable.)


Turning kWh into CO₂e: a quick, defensible method

Your sustainability stakeholders care about tons, not watts. To translate HVAC savings into CO₂e:

  1. Quantify energy from the measure (e.g., fan kWh drop from low-pressure filters; heating/cooling kWh or therms saved from DCV; kWh saved from FDD fixes).

  2. Apply grid or fuel emission factors appropriate to the site(s) and year.

    • U.S. electricity (2022 eGRID avg): ≈ 0.393 kg CO₂/kWh (867.5 lb/MWh delivered). US EPA+1

    • Canada electricity (2025 factors) vary widely by province—e.g., Ontario: 38 g CO₂e/kWh; Alberta: 490 g CO₂e/kWh. Selecting the right regional factor matters. Canada.ca


If a low-pressure filter reduces fan energy by ~300 kWh/year per unit (magnitude depends on hours, fan size, and baseline pressure):

  • U.S. eGRID avg: 300 kWh × 0.393 kg/kWh ≈ 118 kg CO₂e/year per filter.

  • Ontario: 300 kWh × 0.038 kg/kWh ≈ 11 kg CO₂e/year per filter.

This is why portfolios across different grids see very different CO₂e per kWh outcomes. Even when the kWh savings are identical. US EPA


For transparency in ESG filings, reference the EPA eGRID subregion or the Government of Canada tables (or your utility-specific factors) and archive the PDFs used for each reporting year. US EPA


Risk management & IAQ alignment

  • Stay within ASHRAE 62.1 minimums at all times when spaces are occupied. DCV is about right-sizing, not starving air. Updated addenda clarify occupancy-based turndown rules—use them. ASHRAE

  • Filter choices: Seek equal or higher capture with lower ΔP; measure clean and loaded ΔP at your own face velocities. Research shows energy impact depends on filter design and system configuration, not only MERV. ScienceDirect

  • Measurement culture: Treat IAQ and energy as co-optimized objectives by trending PM, CO₂, temperature, and fan power together, so nobody is flying blind.


What this unlocks for 2026 capex

Once you bank the operational tons above, the economics of electrification, heat recovery, and heat pumps improve because you’re sizing for reduced loads. DOE/NREL work on advanced RTU control consistently shows meaningful kWh reductions when variable fans and DCV are layered in—think of these as pre-project multipliers that de-risk later capex. NREL Docs


The Power of the Overlooked 20%

In the rush to decarbonize, it’s tempting to chase the biggest, newest technologies. But the truth is that many of the most reliable carbon savings are already within reach. Hidden in fans, filters, ventilation rates, and maintenance routines.


Filtration, demand-controlled ventilation, and preventative maintenance may not make the headlines, but together they represent the overlooked 20% of actions that can deliver 80% of your emissions savings. They are measurable, repeatable, and scalable across portfolios, exactly the kind of solutions facility leaders need as they enter a new year of climate commitments.

When More Ventilation Isn’t Always Better: The Emerging Case for Outside Air Reduction

  • Writer: Ava Montini
    Ava Montini
  • Sep 12, 2025
  • 6 min read

At the height of the COVID-19 pandemic, building operators were given one clear directive: get as much fresh outside air into the building as possible.


The reasoning was simple and sound: diluting indoor air with outside air reduced the concentration of airborne viruses and gave occupants a greater sense of safety. Schools cranked open dampers, office towers increased their minimum ventilation rates, and healthcare facilities invested heavily in boosting air exchanges.


That strategy worked in an emergency, but it also came at a cost. Energy bills spiked as HVAC systems struggled to heat and cool the constant flow of unconditioned outside air. Humidity control became more difficult. Comfort complaints rose. And in some regions, the “fresh air” being drawn inside was anything but fresh. Things like wildfire smoke, traffic emissions, and industrial pollutants all found their way indoors.


Fast forward to today, and the conversation has shifted. ASHRAE and other standard-setting bodies have recognized that the blanket approach of maximum ventilation isn’t sustainable as a long-term practice.


As we’ve moved past the emergency phase, a more nuanced picture is emerging. Outside air confers benefits (especially in terms of health), but it also imposes costs: energy, comfort, mechanical wear, sometimes even polluted air if your outdoor environment isn’t clean. ASHRAE, energy codes, and HVAC practice are now pushing toward finding balance. One big part of that shift is outside air reduction (or controlling outside air to what’s necessary, rather than “as much as possible”).


Why Reduce Outside Air? What Are the Trade-Offs


To see why reducing outside air is resurfacing, it's helpful to walk through what the costs are and what the benefits might be of dialling things back.



The Costs of Too Much Outside Air

  1. Energy Use

    • Heating and cooling costs skyrocket when you have to condition large volumes of outdoor air, especially in extreme climates. In summer, bringing in hot, humid air means your cooling system works harder; in winter, cold air needs heating.

    • Beyond simply heating/cooling, there’s also fan energy. More outside air often means more airflow through dampers, larger pressure differentials, etc.

  2. Visual Comfort / Thermal Discomfort

    • Cold drafts in winter; humid, sweaty feelings in summer if moist outdoor air isn’t adequately dehumidified.

    • Inconsistent thermal zones due to mixing outside air with return or recirculated air.

  3. Mechanical Wear & Maintenance

    • Outside air includes particulates, pollutants, and moisture. Therefore filters, coils, ducts, and dampers need more maintenance.

    • When outside air brings in pollutants or high humidity, it can cause corrosion, mold, or damage to finish materials.

  4. Indoor Air Quality Considerations

    • Ironically, bringing in outside air isn’t always “cleaner”; if outdoor air is polluted (e.g. wildfire smoke, high PM2.5, industrial pollution), ventilation could degrade indoor air quality.


The Benefits of Reducing Outside Air (When Done Right)

  1. Energy Savings

    • Reduced heating/cooling loads → lower utility bills.

    • In some ASHRAE Standard 90.1 addenda / code changes, reducing outdoor air intake is explicitly a path toward improved energy efficiency. For example, changes made in standard 90.1-2019 (and later) allow reduced outside air intake in central systems and reduced minimum flows in VAV (variable air volume) boxes. Energy Codes

    • Buildings with moderated outside air approaches (versus maximum outside air strategy) can often hit much better energy performance, especially in climates with extreme temperatures.

  2. Comfort and Building Stability

    • More stable indoor temperatures, less risk of humidity spikes or condensation issues.

    • Better ability to maintain indoor comfort metrics, which improves occupant satisfaction.

  3. Cost Predictability & Maintenance Savings

    • Less strain on HVAC equipment.

    • Lower maintenance cost due to fewer introduced contaminants, less filter load, etc.

  4. Health / IAQ Still Possible

    • By using strategies such as proper filtration (appropriately rated filters), UVGI, good air distribution, and periodic flushing, you can maintain healthy indoor air even with more controlled outside air.

    • ASHRAE guidance, post-COVID, suggests that ventilation + filtration + other engineering controls together are the path—not merely “open all dampers.” ASHRAE


How ASHRAE & Codes Are Shifting



The push to balance ventilation, energy and comfort is finding formal expression in updated standards and codes. Some key threads:

  • ASHRAE Standard 62.1 (Ventilation for Acceptable Indoor Air Quality) has been the go-to for minimum ventilation. But recent addenda adjust how outside air rates are calculated, especially in Variable Air Volume (VAV) systems, enabling more dynamic or performance-based approaches. Energy Codes

  • ASHRAE Standard 90.1 (Energy Standard for Buildings Except Low-Rise Residential Buildings) is increasingly recognizing that “more outside air” is not always the optimal path for energy efficiency. The 2019 to 2022 versions include addenda that allow for reduced outdoor air intake in some scenarios and model outside air intake more precisely. Energy Codes

  • Post-COVID Guidance from the Epidemic Task Force and other committees acknowledges that increased ventilation is helpful for infectious disease mitigation—but also warns about the cost, feasibility, and trade-offs. ASHRAE’s filtration & disinfection guidance, for instance, emphasizes that filters should be sealed well, systems should be maintained, and energy impacts considered. ASHRAE

  • There is growing interest in “ventilation efficiency” (i.e. how well the outdoor air being brought in actually participates in diluting contaminant levels) vs simply “bringing in more air.” That opens doors for smarter design: placement of supply/exhaust, air distribution patterns, possibly recirculation with clean filtration, and technology like UVGI in ducts. arXiv


What Building Owners / Managers Should Do

If you’re in charge of managing indoor air quality, HVAC systems, or the budget, here are some practical steps, questions, and strategies to move toward smart outside air reduction without compromising health or compliance.

Step

What to Do

Key Questions & Considerations

1. Audit your current system

Measure how much outside air is being brought in currently. Identify how often dampers are fully open, what settings for minimum outside air are. Document past energy bills, thermal comfort complaints.

Do you really need to run at 100 % outdoor air all the time? What’s the outside-air fraction during non-peak periods? How often are you using demand-controlled ventilation?

2. Model / simulate

Use energy modelling (or vendor/engineering consultants) to simulate what energy & comfort impact you’d see from reducing outside air to code minimum vs current levels vs maximum “pandemic level.” Include local climate, outdoor pollutant levels.

What’s your climate? How extreme are winters / summers? What are outdoor pollution or humidity challenges? Can your HVAC system handle variable loads well?

3. Filter & clean

If you reduce outside air, you’re inherently relying more on “recirculation / indoor air cleaning” to maintain IAQ. Ensure your filters are appropriate efficiency, well sealed, replaced regularly. Consider supplementary measures (UV, air cleaners, HEPA, etc.).

What is the MERV rating you’re using? Can your fan/coil handle higher efficiencies without losing capacity? How about maintenance cycles?

4. Design flexibility & control

Make systems adjustable—both in terms of outdoor air intake (dampers, controls) and monitoring (CO₂, PM2.5, VOCs). This allows ramping up when needed, and reducing when risk is low or when conditions are unfavorable.

Do you have sensors to detect indoor air quality? Do your controls allow override or programmed changes? Are occupants/management aware and aligned with policy?

5. Engage stakeholders

Staff, occupants, board members often worry that reducing outside air means compromising health. Transparency helps: show them energy/comfort data, IAQ readings, trade-offs. Sometimes policies (e.g. open windows during good outdoor air, closed when it’s bad) help.

What are occupant expectations? Do you have health policies in place? Who signs off on trade-offs (e.g. budget vs comfort)?

6. Monitor & adjust

After changes, monitor indoor environment (temperature, humidity, CO₂, pollutant levels), energy, comfort complaints. Be ready to adjust. Outside air isn’t a static setting; it’s dynamic.

How often will you review? What thresholds trigger change? For example: high CO₂ or PM2.5, or outdoor air pollution alerts, might warrant reducing outside air.


What This Means for Policy, Standards, & the Future



Energy codes & carbon targets

As jurisdictions push toward net zero or carbon reduction, the HVAC energy penalty of over-ventilating becomes a liability. Efficient outdoor air management helps reduce energy use, which helps reduce emissions. ASHRAE 90.1’s newer addenda are already projecting energy savings from smarter outside air settings. Energy Codes


Health & resilience

Pandemics have taught us that buildings need flexibility—not fixed, extreme settings. Systems that can adapt: e.g., crank up ventilation when risk is high, pull back otherwise—are more resilient. Outdoor air reduction is part of enabling that flexibility.


Indoor air quality (IAQ) & occupant wellness

People increasingly expect buildings (schools, offices, public spaces) to deliver both clean air and comfort without extreme energy waste. Outside air reduction done thoughtfully helps spread the benefits: lower energy bills, better comfort, less waste.


Cost pressures

Energy costs are volatile. Running massive outside air loads just to “play it safe” all the time may no longer be financially justified, especially in regions with high energy costs or challenging climates.


Getting Outside Air Right, Not Just More


After so many years where the message was “more outside air, more safety,” we’re entering a more mature phase—one where how outside air is managed, rather than just how much, becomes the critical question.


Reducing outside air (when it can be done safely) doesn’t mean lowering standards or compromising on health. It means using all the tools: ventilation, filtration, controls and monitoring, to deliver indoor air quality that is healthy, comfortable, sustainable and cost-effective.


If you’re managing buildings, this is the moment to rethink your default settings. Push for audits, invest in systems and sensors, communicate clearly with occupants. Because the buildings that get this right will be healthier, more resilient, and much more efficient in the long run.



 
 

Explore expert insights, stay up-to-date with industry events, and gain a deeper understanding of the developments shaping the built environment.

Subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page