top of page

When More Ventilation Isn’t Always Better: The Emerging Case for Outside Air Reduction

Learn why outside air reduction is reshaping building operations. Balance indoor air quality, energy savings, and ASHRAE standards in the post-COVID era.

Ava Montini

Sep 12, 2025

Written by 

Published on

Tags

At the height of the COVID-19 pandemic, building operators were given one clear directive: get as much fresh outside air into the building as possible.


The reasoning was simple and sound: diluting indoor air with outside air reduced the concentration of airborne viruses and gave occupants a greater sense of safety. Schools cranked open dampers, office towers increased their minimum ventilation rates, and healthcare facilities invested heavily in boosting air exchanges.


That strategy worked in an emergency, but it also came at a cost. Energy bills spiked as HVAC systems struggled to heat and cool the constant flow of unconditioned outside air. Humidity control became more difficult. Comfort complaints rose. And in some regions, the “fresh air” being drawn inside was anything but fresh. Things like wildfire smoke, traffic emissions, and industrial pollutants all found their way indoors.


Fast forward to today, and the conversation has shifted. ASHRAE and other standard-setting bodies have recognized that the blanket approach of maximum ventilation isn’t sustainable as a long-term practice.


As we’ve moved past the emergency phase, a more nuanced picture is emerging. Outside air confers benefits (especially in terms of health), but it also imposes costs: energy, comfort, mechanical wear, sometimes even polluted air if your outdoor environment isn’t clean. ASHRAE, energy codes, and HVAC practice are now pushing toward finding balance. One big part of that shift is outside air reduction (or controlling outside air to what’s necessary, rather than “as much as possible”).


Why Reduce Outside Air? What Are the Trade-Offs


To see why reducing outside air is resurfacing, it's helpful to walk through what the costs are and what the benefits might be of dialling things back.



The Costs of Too Much Outside Air

  1. Energy Use

    • Heating and cooling costs skyrocket when you have to condition large volumes of outdoor air, especially in extreme climates. In summer, bringing in hot, humid air means your cooling system works harder; in winter, cold air needs heating.

    • Beyond simply heating/cooling, there’s also fan energy. More outside air often means more airflow through dampers, larger pressure differentials, etc.

  2. Visual Comfort / Thermal Discomfort

    • Cold drafts in winter; humid, sweaty feelings in summer if moist outdoor air isn’t adequately dehumidified.

    • Inconsistent thermal zones due to mixing outside air with return or recirculated air.

  3. Mechanical Wear & Maintenance

    • Outside air includes particulates, pollutants, and moisture. Therefore filters, coils, ducts, and dampers need more maintenance.

    • When outside air brings in pollutants or high humidity, it can cause corrosion, mold, or damage to finish materials.

  4. Indoor Air Quality Considerations

    • Ironically, bringing in outside air isn’t always “cleaner”; if outdoor air is polluted (e.g. wildfire smoke, high PM2.5, industrial pollution), ventilation could degrade indoor air quality.


The Benefits of Reducing Outside Air (When Done Right)

  1. Energy Savings

    • Reduced heating/cooling loads → lower utility bills.

    • In some ASHRAE Standard 90.1 addenda / code changes, reducing outdoor air intake is explicitly a path toward improved energy efficiency. For example, changes made in standard 90.1-2019 (and later) allow reduced outside air intake in central systems and reduced minimum flows in VAV (variable air volume) boxes. Energy Codes

    • Buildings with moderated outside air approaches (versus maximum outside air strategy) can often hit much better energy performance, especially in climates with extreme temperatures.

  2. Comfort and Building Stability

    • More stable indoor temperatures, less risk of humidity spikes or condensation issues.

    • Better ability to maintain indoor comfort metrics, which improves occupant satisfaction.

  3. Cost Predictability & Maintenance Savings

    • Less strain on HVAC equipment.

    • Lower maintenance cost due to fewer introduced contaminants, less filter load, etc.

  4. Health / IAQ Still Possible

    • By using strategies such as proper filtration (appropriately rated filters), UVGI, good air distribution, and periodic flushing, you can maintain healthy indoor air even with more controlled outside air.

    • ASHRAE guidance, post-COVID, suggests that ventilation + filtration + other engineering controls together are the path—not merely “open all dampers.” ASHRAE


How ASHRAE & Codes Are Shifting



The push to balance ventilation, energy and comfort is finding formal expression in updated standards and codes. Some key threads:

  • ASHRAE Standard 62.1 (Ventilation for Acceptable Indoor Air Quality) has been the go-to for minimum ventilation. But recent addenda adjust how outside air rates are calculated, especially in Variable Air Volume (VAV) systems, enabling more dynamic or performance-based approaches. Energy Codes

  • ASHRAE Standard 90.1 (Energy Standard for Buildings Except Low-Rise Residential Buildings) is increasingly recognizing that “more outside air” is not always the optimal path for energy efficiency. The 2019 to 2022 versions include addenda that allow for reduced outdoor air intake in some scenarios and model outside air intake more precisely. Energy Codes

  • Post-COVID Guidance from the Epidemic Task Force and other committees acknowledges that increased ventilation is helpful for infectious disease mitigation—but also warns about the cost, feasibility, and trade-offs. ASHRAE’s filtration & disinfection guidance, for instance, emphasizes that filters should be sealed well, systems should be maintained, and energy impacts considered. ASHRAE

  • There is growing interest in “ventilation efficiency” (i.e. how well the outdoor air being brought in actually participates in diluting contaminant levels) vs simply “bringing in more air.” That opens doors for smarter design: placement of supply/exhaust, air distribution patterns, possibly recirculation with clean filtration, and technology like UVGI in ducts. arXiv


What Building Owners / Managers Should Do

If you’re in charge of managing indoor air quality, HVAC systems, or the budget, here are some practical steps, questions, and strategies to move toward smart outside air reduction without compromising health or compliance.

Step

What to Do

Key Questions & Considerations

1. Audit your current system

Measure how much outside air is being brought in currently. Identify how often dampers are fully open, what settings for minimum outside air are. Document past energy bills, thermal comfort complaints.

Do you really need to run at 100 % outdoor air all the time? What’s the outside-air fraction during non-peak periods? How often are you using demand-controlled ventilation?

2. Model / simulate

Use energy modelling (or vendor/engineering consultants) to simulate what energy & comfort impact you’d see from reducing outside air to code minimum vs current levels vs maximum “pandemic level.” Include local climate, outdoor pollutant levels.

What’s your climate? How extreme are winters / summers? What are outdoor pollution or humidity challenges? Can your HVAC system handle variable loads well?

3. Filter & clean

If you reduce outside air, you’re inherently relying more on “recirculation / indoor air cleaning” to maintain IAQ. Ensure your filters are appropriate efficiency, well sealed, replaced regularly. Consider supplementary measures (UV, air cleaners, HEPA, etc.).

What is the MERV rating you’re using? Can your fan/coil handle higher efficiencies without losing capacity? How about maintenance cycles?

4. Design flexibility & control

Make systems adjustable—both in terms of outdoor air intake (dampers, controls) and monitoring (CO₂, PM2.5, VOCs). This allows ramping up when needed, and reducing when risk is low or when conditions are unfavorable.

Do you have sensors to detect indoor air quality? Do your controls allow override or programmed changes? Are occupants/management aware and aligned with policy?

5. Engage stakeholders

Staff, occupants, board members often worry that reducing outside air means compromising health. Transparency helps: show them energy/comfort data, IAQ readings, trade-offs. Sometimes policies (e.g. open windows during good outdoor air, closed when it’s bad) help.

What are occupant expectations? Do you have health policies in place? Who signs off on trade-offs (e.g. budget vs comfort)?

6. Monitor & adjust

After changes, monitor indoor environment (temperature, humidity, CO₂, pollutant levels), energy, comfort complaints. Be ready to adjust. Outside air isn’t a static setting; it’s dynamic.

How often will you review? What thresholds trigger change? For example: high CO₂ or PM2.5, or outdoor air pollution alerts, might warrant reducing outside air.


What This Means for Policy, Standards, & the Future



Energy codes & carbon targets

As jurisdictions push toward net zero or carbon reduction, the HVAC energy penalty of over-ventilating becomes a liability. Efficient outdoor air management helps reduce energy use, which helps reduce emissions. ASHRAE 90.1’s newer addenda are already projecting energy savings from smarter outside air settings. Energy Codes


Health & resilience

Pandemics have taught us that buildings need flexibility—not fixed, extreme settings. Systems that can adapt: e.g., crank up ventilation when risk is high, pull back otherwise—are more resilient. Outdoor air reduction is part of enabling that flexibility.


Indoor air quality (IAQ) & occupant wellness

People increasingly expect buildings (schools, offices, public spaces) to deliver both clean air and comfort without extreme energy waste. Outside air reduction done thoughtfully helps spread the benefits: lower energy bills, better comfort, less waste.


Cost pressures

Energy costs are volatile. Running massive outside air loads just to “play it safe” all the time may no longer be financially justified, especially in regions with high energy costs or challenging climates.


Getting Outside Air Right, Not Just More


After so many years where the message was “more outside air, more safety,” we’re entering a more mature phase—one where how outside air is managed, rather than just how much, becomes the critical question.


Reducing outside air (when it can be done safely) doesn’t mean lowering standards or compromising on health. It means using all the tools: ventilation, filtration, controls and monitoring, to deliver indoor air quality that is healthy, comfortable, sustainable and cost-effective.


If you’re managing buildings, this is the moment to rethink your default settings. Push for audits, invest in systems and sensors, communicate clearly with occupants. Because the buildings that get this right will be healthier, more resilient, and much more efficient in the long run.



Understanding Sick Building Syndrome: Causes, Symptoms, and Solutions

  • Writer: Jennifer Crowley
    Jennifer Crowley
  • Jul 11, 2024
  • 3 min read
Young man in the foreground sitting on an office chair clutching his head in pain, with a boardroom or working employees in the background
Addressing SBS promptly is crucial for safeguarding the health of building occupants and ensuring a productive, comfortable living or working environment.

What is Sick Building Syndrome (SBS)?

Sick Building Syndrome (SBS) is a growing concern in modern workplaces and living environments. SBS refers to a situation where occupants of a building experience acute health issues and discomfort that seem linked to time spent in the building, but no specific illness or cause can be identified. Understanding and addressing SBS is crucial for ensuring the health and well-being of building occupants.


Common Causes and Symptoms

Symptoms of SBS:

  • Headaches: Persistent or recurring headaches that are not attributable to other causes.

  • Respiratory Issues: Symptoms like coughing, shortness of breath, chest tightness, and wheezing.

  • Eye, Nose, or Throat Irritation: Dryness, itching, burning, or watery eyes, along with irritation in the nasal passages or throat.

  • Fatigue: Unusual tiredness, lethargy, and lack of energy.

  • Difficulty Concentrating: Cognitive issues such as memory problems and difficulty focusing.

  • Skin Irritation: Rashes, dry skin, or itching.


Common Causes of SBS:

  • Poor Ventilation and Inadequate Air Exchange: Insufficient ventilation systems fail to bring in fresh air and remove stale air, which leads to an accumulation of indoor pollutants.

  • Indoor Air Pollutants: The presence of VOCs (Volatile Organic Compounds) from building materials, furnishings, cleaning products, and office equipment. These compounds can off-gas and accumulate in the indoor environment.

  • Mold and Microbial Contamination: Dampness and high humidity levels can lead to mold growth and the proliferation of bacteria and fungi, which release spores and other microbial contaminants into the air.

  • Inadequate Temperature and Humidity Control: Poor regulation of indoor temperature and humidity levels can contribute to discomfort and the growth of indoor pollutants.

Keyword statistic and cluster of Sick Building Syndrome provided By MDPI as seen in the article link below
Poor air quality and pollutants cause SBS, leading to respiratory and mental health issues with women, children, and office workers being more vulnerable to SBS due to prolonged indoor stays.

Health Impacts of SBS

The adverse health effects of SBS can be significant, impacting both physical and mental well-being. Prolonged exposure to poor indoor air quality can lead to chronic respiratory conditions, such as asthma and bronchitis, severe allergies, and even long-term neurological issues like chronic fatigue syndrome. For businesses, this translates to reduced productivity, increased absenteeism, and higher healthcare costs. Check out MDPI's scholarly article on Building and Health: Mapping the Knowledge Development of Sick Building Syndrome for more detailed information.


Regulatory Concerns

To combat SBS, various air quality standards and recommendations have been established. Organizations like the Environmental Protection Agency (EPA) and the World Health Organization (WHO) provide guidelines for acceptable indoor air quality levels. These standards emphasize the importance of proper ventilation, regular maintenance of HVAC systems, and the reduction of indoor pollutants. Buildings failing to meet these standards can face legal repercussions, potential fines, and decreased occupant satisfaction.


Solutions: How Blade Air's Pro Filter Can Help


Blade Air's Pro Filter is designed to address and mitigate the causes of SBS effectively. By incorporating advanced HEPA filtration technology, the Pro Filter captures and removes harmful particulates, allergens, and pollutants from the air. Its design ensures improved air circulation and ventilation, creating a healthier indoor environment. Additionally, Blade Air's Pro Filter can be seamlessly integrated into existing HVAC systems, offering a comprehensive solution for maintaining optimal indoor air quality.


The Importance of Immediate Action

Addressing SBS promptly is crucial for safeguarding the health of building occupants and ensuring a productive, comfortable living or working environment. Blade Air is committed to providing cutting-edge air quality solutions that tackle SBS head-on.


By investing in Blade Air's Pro Filter technology, you can enhance indoor air quality, comply with regulatory standards, and promote overall well-being. Get in touch with our sales team if you'd like to learn more about how we can assist you with the air quality in your buildings - together we can help your occupants breathe easier.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page