top of page

Facility Changes That Drive 80% of Emissions Savings

The overlooked 20% of building strategies can deliver 80% of emissions savings. Here’s how to reset your 2026 baseline.

Ava Montini

Jan 6, 2026

Written by 

Published on

Tags

The 80/20 Pattern in Building Decarbonization


In business, the Pareto principle (the idea that 20% of actions create 80% of results) shows up everywhere. It also applies to the way buildings decarbonize.



Most portfolios still treat carbon reduction as a capital-projects problem: new chillers, new boilers, new equipment. These projects are visible, expensive, and easy to headline in ESG reports. But in practice, the biggest near-term gains lie in the systems that are already running every hour of every day.


According to the U.S. Energy Information Administration, space heating, cooling, and ventilation are among the top energy end-uses in commercial buildings, with ventilation alone consuming nearly 10% of the total building energy. Factor in heating and cooling, and the air systems you already own set the floor for your emissions profile. Industry surveys and guidance reinforce this point: HVAC systems consistently account for approximately 40% of energy use in commercial facilities. A share that shifts by climate zone but remains dominant across the board.


Before you buy new megawatts, make the watts you already use travel a shorter, smarter, more efficient path.


Filtration as a carbon multiplier (not a consumable line item)



Why filtration matters for energy (and CO₂e)

Filters impose a pressure drop; fans work against that resistance. Basic fan/affinity laws tell us that pressure rises with the square of fan speed, and fan power typically scales with pressure/flow requirements. Therefore, adding resistance increases fan energy unless the system compensates by reducing the flow.


On variable-speed systems that maintain flow, peer-reviewed work shows roughly linear fan-power response to added system pressure: a 10% rise in total pressure drop ≈ 10% rise in fan electric power (assumes fan and motor efficiencies roughly constant at operating point). CaEE


Field and lab studies show that higher filter resistance reduces supply airflow and can increase total power (especially as filters load), degrading cooling capacity and forcing longer runtimes. Newer research also documents the compounding effects of filter loading, with heavy clogging cutting net supply airflow by >30%, a textbook example of invisible energy waste. ScienceDirect


Moving up in MERV doesn’t automatically mean higher energy costs. Well-designed filters use optimized media and geometry (like deeper pleats or more surface area) to keep airflow resistance low. Studies have shown that these higher-efficiency filters can have a lower pressure drop than inexpensive MERV 8 pleated filters, especially when systems are properly balanced. In other words, it’s the filter’s pressure profile that matters, not just the MERV number. ScienceDirect


If you can lower your filter pressure drop while maintaining or improving capture, you directly reduce continuous fan energy. One of the few all-hours loads in many facilities. Because fans run whenever you condition or ventilate space, these savings translate cleanly into CO₂e reductions (see Section 5 for the math).


Demand-Controlled Ventilation (DCV)



What DCV does

It modulates outside-air intake based on occupancy (CO₂, people-count, scheduling) to avoid conditioning empty spaces. Codes and standards increasingly require or encourage DCV in high-occupancy areas, with ASHRAE 62.1 updates clarifying when and how ventilation turndown is permitted (including addenda that allow reduction to zero OA during verified unoccupied periods in certain space types). ASHRAE


Across building types and climates, published work shows that DCV control logic achieves ~9–33% HVAC energy savings. Advanced rooftop-unit control packages, which incorporate multi-speed/variable fans, DCV, and smarter economizer control, have delivered double-digit fan and cooling savings, sometimes exceeding 20%. Taylor & Francis Online


Lawrence Berkeley National Laboratory (LBNL) analyses flag that cost-effectiveness depends on the baseline over-ventilation and occupancy patterns; if your current minimums are already close to code, savings shrink. That’s a guidance feature, not a flaw—the point is to measure your baseline VRs before projecting benefits. Energy Technologies Area


DCV is a surgical lever: attack over-ventilation where it exists, prove reductions with trend data, and lock in permanent load reductions; especially valuable in heating-dominated regions where conditioning outside air is expensive in both energy and CO₂e. Energy Codes Guide


Preventative Maintenance


Controls drift, coils foul, dampers stick, sensors mis-calibrate—quietly taxing 5–15% of portfolio energy in many studies. Modern fault detection & diagnostics (FDD) tools and structured maintenance programs quickly recapture that waste. NREL Docs


  1. Coil fouling: Government and academic sources document material energy penalties from dirty coils; some guidance cites compressor energy up to ~30% higher with fouled condensers (case and climate dependent). Even conservative findings confirm meaningful efficiency and capacity degradation. Avoidable with routine cleaning. Energy.gov.au


  2. Economizers & OA paths: Mis-tuned economizers are common and costly; retuning and sensor QA via FDD is repeatedly highlighted in DOE/NREL/PNNL guidance as a top-tier low-cost fix. PNNL


  3. RTU controls refresh: Campaign results and tech briefs demonstrate that advanced RTU control (variable fan, DCV, and economizer optimization) consistently yields energy reductions of more than 20%, with 25–50% reductions cited in certain deployments compared to legacy constant-speed, always-open baselines. Better Buildings Solution Center


Maintenance is mitigation. It’s also Scope 3-friendly: operating equipment at design efficiency extends service life and defers replacements, reducing embodied carbon churn in your capital plan. (See the measurement plan below to make these savings auditable.)


Turning kWh into CO₂e: a quick, defensible method

Your sustainability stakeholders care about tons, not watts. To translate HVAC savings into CO₂e:

  1. Quantify energy from the measure (e.g., fan kWh drop from low-pressure filters; heating/cooling kWh or therms saved from DCV; kWh saved from FDD fixes).

  2. Apply grid or fuel emission factors appropriate to the site(s) and year.

    • U.S. electricity (2022 eGRID avg): ≈ 0.393 kg CO₂/kWh (867.5 lb/MWh delivered). US EPA+1

    • Canada electricity (2025 factors) vary widely by province—e.g., Ontario: 38 g CO₂e/kWh; Alberta: 490 g CO₂e/kWh. Selecting the right regional factor matters. Canada.ca


If a low-pressure filter reduces fan energy by ~300 kWh/year per unit (magnitude depends on hours, fan size, and baseline pressure):

  • U.S. eGRID avg: 300 kWh × 0.393 kg/kWh ≈ 118 kg CO₂e/year per filter.

  • Ontario: 300 kWh × 0.038 kg/kWh ≈ 11 kg CO₂e/year per filter.

This is why portfolios across different grids see very different CO₂e per kWh outcomes. Even when the kWh savings are identical. US EPA


For transparency in ESG filings, reference the EPA eGRID subregion or the Government of Canada tables (or your utility-specific factors) and archive the PDFs used for each reporting year. US EPA


Risk management & IAQ alignment

  • Stay within ASHRAE 62.1 minimums at all times when spaces are occupied. DCV is about right-sizing, not starving air. Updated addenda clarify occupancy-based turndown rules—use them. ASHRAE

  • Filter choices: Seek equal or higher capture with lower ΔP; measure clean and loaded ΔP at your own face velocities. Research shows energy impact depends on filter design and system configuration, not only MERV. ScienceDirect

  • Measurement culture: Treat IAQ and energy as co-optimized objectives by trending PM, CO₂, temperature, and fan power together, so nobody is flying blind.


What this unlocks for 2026 capex

Once you bank the operational tons above, the economics of electrification, heat recovery, and heat pumps improve because you’re sizing for reduced loads. DOE/NREL work on advanced RTU control consistently shows meaningful kWh reductions when variable fans and DCV are layered in—think of these as pre-project multipliers that de-risk later capex. NREL Docs


The Power of the Overlooked 20%

In the rush to decarbonize, it’s tempting to chase the biggest, newest technologies. But the truth is that many of the most reliable carbon savings are already within reach. Hidden in fans, filters, ventilation rates, and maintenance routines.


Filtration, demand-controlled ventilation, and preventative maintenance may not make the headlines, but together they represent the overlooked 20% of actions that can deliver 80% of your emissions savings. They are measurable, repeatable, and scalable across portfolios, exactly the kind of solutions facility leaders need as they enter a new year of climate commitments.

Electrostatic Air Filter: Everything You Need to Know

  • Writer: Jennifer Crowley
    Jennifer Crowley
  • Dec 18, 2023
  • 5 min read

Updated: Jul 8, 2024

Image of Blade Air's Pro Filter halfway inserted into a commercial HVAC system
Electrostatic filters utilize static electricity to attract and trap particles on the charged fibres and carbon paths. So instead of getting pulled through and being blocked by filter material like standard filters, the particles are attracted to the filter media.

The importance of indoor air quality and the benefits of maintaining a clean air environment has become a major concern for indoor spaces. These benefits range from our mental and physical health improvements to better HVAC system efficiency and lower electricity costs. As a result, many large, public indoor spaces like offices, schools, buildings, and medical centers that we visit daily are required to pay greater attention to air quality for the safety of everyone.


But often, finding the right indoor air quality solution that is both economically sound and effective can seem daunting and overwhelming. With so many different types of HVAC filters and so much information to digest, how do you know the best choice?

If you want to save money and time while enhancing your air quality, electrostatic HVAC filters may be an excellent solution for your facility. In this blog, we will be going over the different types of electrostatic air cleaning filters, which one is most effective and how they differ from the industry standard filters.


What is an Electrostatic Air Filter?

An electrostatic filter is a form of air purifying technology commonly used in larger indoor spaces – specifically for commercial or industrial purposes. These units can be used in portable air cleaning devices or installed in the ductwork of HVAC systems.

The main idea of electrostatic filters is to utilize static electricity to attract and trap particles on the charged fibres and carbon paths. So instead of getting pulled through and being blocked by filter material like standard filters, the particles are attracted to the filter media.


Types of Electrostatic Filters

You will encounter two standard electrostatic technologies when searching the different types of electrostatic filters. In this article, we will be comparing the two:

  1. Electrostatic Ionized Technology

  2. Electrostatic Polarized Technology

Let’s look at the two technologies in a little more detail.


Electrostatic Ionized Technology


Illustration explaining how the Pro Filter works: Ionic electrostatic filters give a charge to airborne particles passing through the filter. The electrical charge allows the particles to be pulled and entrapped by plates (precipitators) of the opposite charge.
Electrostatic ionizing filters remove large particles, such as dust and pollen, but cannot filter all particles at the same level of efficiency.

Ionic electrostatic filters give a charge to airborne particles passing through the filter. The electrical charge allows the particles to be pulled and entrapped by plates (precipitators) of the opposite charge.


Are Electrostatic Ionized Filters Effective?

Electrostatic ionizing filters effectively remove large particles, such as dust and pollen, from the air but cannot filter the air of all particles at the same level of efficiency. The filter’s efficiency depends on the contaminant’s size; smaller particles in the mid-range within 0.1 to 1 micrometres are not charged as effectively and, as a result, are not collected thoroughly on the plates.


The Effect of Ionization on Health

One of the most significant issues with electrostatic precipitators is the potential creation of ozone as a byproduct. If breathed in at ground level, ozone is proven to be hazardous to one’s health. There is a potential risk of experiencing:

  • Decreases in lung function

  • Aggravation of asthma

  • Throat irritation and cough

  • Chest pain and shortness of breath

  • Inflammation of lung tissue

  • Higher susceptibility to respiratory infection


Electrostatic Polarized Technology 

Unlike Ionizing technology, polarized particles are referred to as bi-polar, meaning that each molecule has a positive charge at one end and a negative charge at the other. Let’s take the example of a magnet; polarized technology works similarly to how magnets’ positive and negative sides attract each other. Electrostatic polarized filters combine three major scientific principles to filter air and trap unwanted particulates.


Steps of the Filtration Process

Illustration detailing the 3 steps for filtration in an electrostatic filter including Impingement, Polarization and Agglomeration
Polarized technology works similarly to how magnets’ positive and negative sides attract each other.

  1. Impingement – Commonly referred to as a pre-filter, the impingement process traps dust by using the media placed in the path of oncoming airborne particles to stop it. 

  2. Polarization is the process of inducing an electrostatic charge to any particulates that pass through the air cleaner. This allows pathogens to be easily removed from the air with oppositely charged fibre media that act like magnets.

  3. Agglomeration is an advanced stage of polarization. The already charged polarized particles attach with other polarized particles as they collide in the air – this is called a “polarized field.” This field binds the submicron particles that standard filters otherwise let pass, deactivates the viruses/bacteria, and traps them in the filter, allowing the air cleaner to capture even the smallest particles.


Why Are Polarized Electrostatic Filters More Effective?

Unlike the more common ionizing technology found in most electrostatic air filters, polarized-media air cleaners do an exceptional job of removing sub-micron (<1 micron in size) particles without the efficiency loss associated with precipitating electronic air cleaners. In addition, as each particle attaches itself to the fibre strands it, in turn, becomes part of the collection process, thereby increasing the effectiveness of the filter as it loads. Polarized media also produces no ozone – making the filter better in performance and for human health. 


To summarize, here is a table demonstrating the difference between the two types of electrostatic filters just discussed.

Ionizing Technology

Ozone

Harmful to health

Not effective on small microns

Messy cleanup

Polarizing Technology

No Ozone

No harm to health

Effective on all sized microns

Hassle-free maintenance






Traditional Filters (MERV)

Until now, we have established that electrostatic polarizing technology is far more effective than electrostatic ionizing technology in indoor settings. But how exactly does it compare to the regular standard filters – that we find in most HVAC systems today? 

All traditional air filters are differentiated according to their MERV (Minimum Efficiency Reporting Value) rating, which denotes their efficiency. The higher a filter’s MERV rating, the more effective it is at capturing airborne particles.

MERV 13 and below are considered to be HVAC-system-grade filters for residential, commercial and general hospital use. MERV 13 filters are able to filter particles closer to the 0.3 microns size, which includes contaminants such as:

  • Pollen

  • Mould

  • Dust

  • Dust Mites

  • Bacteria

  • Pet Dander

  • Smoke

  • Virus carriers

  • Exhaust fumes


Electrostatic Filters vs Standard Filters

When comparing electrostatic polarized filters, specifically the Blade Electrostatic Polarized Filter, to MERV 13 and MERV 8 filters, we see the Blade Electrostatic Polarized Filter has greater filtration performance, filtering at 0.007 microns and maintaining a lower pressure drop. Pressure drop refers to the amount of electricity it takes to push the air through a filter. A low-pressure drop rating means pushing the air through the filter takes less power.  

Learn about other Types of HVAC Filters and how they compare to electrostatic filters.


Blade’s Electrostatic Polarized Filters

The Blade Electrostatic Polarized filter provides HEPA-Class and MERV-rated filtration while lowering your building’s energy consumption and maintenance time. Our electrostatic filters are the best option in HVAC systems and facilities where enhanced air quality is required, but a HEPA filter is not practical. 


Blade electrostatic polarized filters remove micro-particulates 40x smaller than traditional HVAC filters, enhancing your indoor air quality.


Blade’s electrostatic polarized filters remove harmful particulates, even as small as 0.007 micrometres, that traditional filters do not, making them the ideal filtration solution. Utilizing active polarization fields binds the tiny submicron particles together that standard filters and electrostatic ionic filters let pass.


When compared to traditional standard filters, Blade is proven to provide enhanced air quality and longer-lasting filters and lowers your energy consumption. In addition, the filter’s innovative design uses low-density media, reducing the strain on your HVAC system compared to traditional filters and high-efficiency systems.


Explore expert insights, stay up-to-date with industry events, and gain a deeper understanding of the developments shaping the built environment.

Subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page