top of page

Why Energy Efficiency Is Becoming the Real Currency

As global power demand surges from AI and renewables reshape the grid, businesses must turn to energy efficiency to cut costs, reduce risk, and stay resilient.

Ava Montini

Oct 20, 2025

Written by 

Published on

Tags

For the first time in history, renewables have overtaken coal as the world’s largest source of electricity, making up 34.3% of global power generation in the first half of 2025. (The Guardian) Wind and solar are leading the charge, but the global energy landscape is entering a new and more complex era — one defined not just by how we produce power, but by how much we use.


And lately, usage is spiking.


The AI Boom Is Rewriting the Energy Equation

From data centers to chip foundries, the AI boom has ignited a new kind of industrial revolution. Major tech firms (such as Nvidia, Microsoft and others) are no longer waiting for the U.S. grid to catch up; they’re building their own power plants. In fact, one analysis finds that electricity costs in some regions near large AI data centre installations have surged up to 267% compared with five years ago. (Bloomberg)


ree

It’s not just abstract. In the U.S., wholesale electricity prices that would have been modest in 2020 are now far higher in data-centre hotspots. (Sandbox)


Why is this relevant?

  • These high-demand loads strain the grid, making the cost of electricity (and grid services) higher for everyone.

  • The more power-hungry the infrastructure becomes, the greater the business risk for enterprises that rely on stable, affordable energy.

  • As grid infrastructure lags behind demand, companies and organizations have to ask: What control do we have over our energy consumption?


When Power Becomes a Premium

Every kilowatt-hour now carries more weight, especially for companies operating large buildings or complex HVAC systems (sound familiar?). Efficiency isn’t just an ESG metric anymore; it’s a business imperative tied directly to cost-control and resilience.


ree

We’re now at a moment where:

  • Renewables are expanding fast, but demand is rising even faster in some tech/industrial sectors. For example, the International Energy Agency (IEA) projects that electricity demand from data centres will more than double by 2030 to around 945 TWh — “more than four times faster than the growth of total electricity consumption from all other sectors”. (IEA)

  • Some regions are seeing localized shortages, transmission constraints and higher wholesale power prices. In the U.S., wholesale electricity prices in several markets were up by 40-80 % in 2025 compared with 2024. (Construction Physics)

  • Organizations that wait for the “grid fix” may find themselves paying a premium (or exposed to reliability risk) in the meantime.


Put simply: If you can’t fully control your energy supply, you must control your energy use. Efficiency becomes the operational hedge.


The Efficiency Imperative

Here’s where the story turns from macro trends into actionable insight. The good news: The same technologies driving smarter AI are also enabling smarter buildings and systems. Intelligent filtration, automation, low-pressure HVAC systems, demand-response strategies — these are the tools to control the energy side of the business.


Here are three reasons why now is the time to focus on performance and efficiency:

  1. Cost Avoidance Becomes Value Creation

    With energy prices under pressure and demand growth uncertain, reducing consumption becomes a direct cost-mitigation strategy.– Efficiency improvements often pay back faster when baseline energy costs are rising.


  2. Grid Risk = Business Risk

    Relying solely on external supply (even if green) is a vulnerability; the more you rely on the grid, the more you’re exposed to spikes, shortages or regulatory premium pricing.– Being energy-efficient gives you more independence and control.


  3. Sustainability Meets Differentiation

    With the global pivot to renewables (for example, the projection that global renewable capacity additions between 2025-2030 will be ~4,600 GW) IEA — the organisations that get ahead now won’t just be “green” — they’ll be efficient green. That matters for brand, operations, risk profile.


When you think about building automation, indoor air quality and HVAC systems, you’re often dealing with the largest energy loads after lighting in a built environment. By focusing on filtration, optimization and smart control, you’re reducing both the peak load and the total energy used, which in the current climate is exactly the kind of strategic leverage organizations need.


  • Yes: the news about renewables overtaking coal is encouraging — that shift shows progress. But it also hides a key truth: demand is increasing fast, thanks in part to data, AI, buildings and more.

  • That means supply-side improvements alone aren’t enough. They must be matched by demand-side discipline (i.e., efficiency).

  • Organizations that act now to optimize their energy consumption will be better positioned, from cost, risk and sustainability standpoints, in the years ahead.


So whether you’re managing a campus, commercial building or industrial facility: don’t wait for the grid to “catch up.” Focus on what you control. Because in this new power era, efficiency is the real currency.



MORE INFORMATION

  • To explore available energy-efficient upgrades and funding programs supporting sustainable building projects, visit our Energy Grants page.


  • Learn how our Pro Filter's are helping organizations reduce energy use and operating costs while improving air quality across their facilities.

Flu Season Meets School Season: How Smarter Air Quality Keeps Classrooms Healthy

  • Writer: Ava Montini
    Ava Montini
  • Aug 19
  • 4 min read

The scene every September

Every September, the school bell rings and hallways come alive again. But as backpacks and lunch boxes make their way back into classrooms, another unwelcome guest tends to sneak in too: flu season.


Teachers know it all too well. The cough that spreads from desk to desk, the hand sanitizer bottles running low by mid-morning, the spike in absenteeism that leaves lesson plans hanging. Parents know it when the inevitable call from the school office comes: “Your child has a fever, please come pick them up.”


It’s a cycle we’ve come to accept as part of the school year. But what if healthier air could help change that story?


Why flu season and school season collide

Respiratory viruses (including influenza) spread more readily indoors, where exhaled particles accumulate. That’s not speculative; CDC/NIOSH is unambiguous that better indoor ventilation reduces occupants’ overall exposure to airborne viruses. CDC


We also know influenza isn’t only about big droplets from a sneeze. People exhale infectious virus in fine aerosols during normal breathing and speaking, which can linger and travel within a room. That was demonstrated in a landmark study that detected infectious influenza virus in exhaled breath from symptomatic adults, no cough required. PNASNature


The drier, colder air from the fall and winter cause low humidity, helping influenza survive and transmit more efficiently. Put simply: when we bring students back into dry, tightly sealed buildings, small airborne particles build up and stay infectious longer. That’s the fixable part.


Think of clean classroom air as a budget with three line items:

  1. Dilute what’s in the room (ventilation/outdoor air)

  2. Remove what’s in the room (filtration/air cleaning)

  3. Disable what’s in the room (UVGI where appropriate)

The key is using them together, sized to the space, and tuned to the school day.


What the standards now say and why it matters

Before the pandemic, most schools designed ventilation systems mainly for comfort—things like controlling odours or keeping CO₂ levels down—not for stopping the spread of illness.


That changed with ASHRAE’s new Standard 241, which focuses specifically on infection control. ASHRAE’s Standard 241: Control of Infectious Aerosols changes the target by introducing Equivalent Clean Airflow (ECA)—a flexible, additive way to hit a per-person clean air goal using any combination of ventilation, filtration, and proven air cleaning. That means a classroom can meet its target by mixing outdoor air with high-efficiency filters, HEPA units, and/or UVGI, rather than relying on outdoor air alone. ASHRAE+1


In parallel, CDC/NIOSH and EPA emphasize practical steps for schools: keep systems maintained, upgrade to MERV-13 or better where equipment allows, and supplement with portable HEPA when central systems can’t carry the whole load. CDC+1Environmental Protection Agency


The evidence that this keeps kids in class

  • In a study of 162 California elementary school classrooms, illness-related absences dropped by 1.6% for every extra 1 l/s‑person of ventilation. Increasing ventilation to meet the state standard (7.1 l/s‑person) from the average (4 l/s‑person) could reduce absences by 3.4%, gain $33 million annually in attendance-based funding, while costing just $4 million more in energy.

  • A study across Washington and Idaho found that a 1,000 ppm increase in indoor CO₂ correlated with a 0.5–0.9% drop in average daily attendance, translating into a 10–20% rise in student absences.

  • In controlled environments, each 500 ppm rise in CO₂ resulted in 1.4–1.8% slower response times, along with a 2.1–2.4% lower throughput on cognitive tasks.

  • Harvard’s COGfx study revealed that building occupants in green-certified, well-ventilated environments scored, on average, 101% higher in cognitive tests than those in conventional buildings. 


“Will MERV-13 break my units?” (The energy/airflow reality)

The honest answer: it depends on the filter you pick and your fan capacity. Research on rooftop units shows that moving from MERV-8 to MERV-13/14 can raise cooling-mode energy use by a few percent if the filter adds a lot of resistance, or it can reduce airflow if the fan can’t keep up. That’s why filter selection matters as much as efficiency.


Not all MERV-13 filters are created equal. Traditional pleated designs often create a higher pressure drop, forcing HVAC systems to work harder and sometimes leading to performance issues. But newer filtration technologies (explicitly engineered for low resistance at high efficiency, like Blade Air's Pro Filter,) are changing that equation. By combining advanced media with optimized form factors, these filters deliver MERV-13 (and higher) performance without the heavy airflow penalty.


California’s Title 24 research reinforces this point: Many modern low-pressure MERV-13 options can maintain pressure drops under 0.20 in. w.c., keeping systems within safe operating ranges. That means schools can improve air quality, meet public health guidance, and stay compliant without sacrificing system efficiency or longevity.


When you factor in the bigger picture—fewer student absences, better cognitive performance, and improved overall school operations—the ROI clearly tilts toward upgrading. Healthier air doesn’t just protect occupants; it protects the bottom line.


How this translates into a classroom target (the ECA idea)

ASHRAE 241’s Equivalent Clean Airflow lets you add up all the ways you’re cleaning air—outdoor air, central filtration, HEPA, UVGI—until you reach the per-occupant target for your space type. It’s flexible, measurable, and avoids unrealistic demands for 100% outdoor air in cold snaps. ASHRAE

A practical approach:

  • Estimate your current outdoor air (from design or testing).

  • Add the “clean air” from MERV-13 upgrades (using published efficiencies) and from each HEPA unit’s clean air delivery rate.

  • If the sum doesn’t meet the ECA target, add another portable unit or rethink your filtration strategy. ASHRAE


What about measurement and transparency?


CO₂ for ventilation

Track a few representative rooms across grade levels and building wings. Persistently high readings during class point to areas needing a fix (dampers, schedules, or supplemental air cleaning). Health Canada’s 1000 ppm residential benchmark is a useful anchor for conversations with families and staff. Canada.ca


PM₂.₅ for smoke days

A couple of low-drift sensors at kid-height in hallways or problem rooms can confirm your filtration strategy keeps indoor levels below outdoors during wildfire events. Health Canada and EPA both recommend this principle. Canada.ca


Bottom line

Flu season doesn’t have to mean higher absence rates and strained HVAC systems. The most effective path is a consistent program: keep ventilation tuned, use filters that balance efficiency with low resistance, and supplement with portable HEPA or UVGI where it makes sense.

Explore expert insights, stay up-to-date with industry events, and gain a deeper understanding of the developments shaping the built environment.

Subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page