top of page

Why Energy Efficiency Is Becoming the Real Currency

As global power demand surges from AI and renewables reshape the grid, businesses must turn to energy efficiency to cut costs, reduce risk, and stay resilient.

Ava Montini

Oct 20, 2025

Written by 

Published on

Tags

For the first time in history, renewables have overtaken coal as the world’s largest source of electricity, making up 34.3% of global power generation in the first half of 2025. (The Guardian) Wind and solar are leading the charge, but the global energy landscape is entering a new and more complex era — one defined not just by how we produce power, but by how much we use.


And lately, usage is spiking.


The AI Boom Is Rewriting the Energy Equation

From data centers to chip foundries, the AI boom has ignited a new kind of industrial revolution. Major tech firms (such as Nvidia, Microsoft and others) are no longer waiting for the U.S. grid to catch up; they’re building their own power plants. In fact, one analysis finds that electricity costs in some regions near large AI data centre installations have surged up to 267% compared with five years ago. (Bloomberg)


ree

It’s not just abstract. In the U.S., wholesale electricity prices that would have been modest in 2020 are now far higher in data-centre hotspots. (Sandbox)


Why is this relevant?

  • These high-demand loads strain the grid, making the cost of electricity (and grid services) higher for everyone.

  • The more power-hungry the infrastructure becomes, the greater the business risk for enterprises that rely on stable, affordable energy.

  • As grid infrastructure lags behind demand, companies and organizations have to ask: What control do we have over our energy consumption?


When Power Becomes a Premium

Every kilowatt-hour now carries more weight, especially for companies operating large buildings or complex HVAC systems (sound familiar?). Efficiency isn’t just an ESG metric anymore; it’s a business imperative tied directly to cost-control and resilience.


ree

We’re now at a moment where:

  • Renewables are expanding fast, but demand is rising even faster in some tech/industrial sectors. For example, the International Energy Agency (IEA) projects that electricity demand from data centres will more than double by 2030 to around 945 TWh — “more than four times faster than the growth of total electricity consumption from all other sectors”. (IEA)

  • Some regions are seeing localized shortages, transmission constraints and higher wholesale power prices. In the U.S., wholesale electricity prices in several markets were up by 40-80 % in 2025 compared with 2024. (Construction Physics)

  • Organizations that wait for the “grid fix” may find themselves paying a premium (or exposed to reliability risk) in the meantime.


Put simply: If you can’t fully control your energy supply, you must control your energy use. Efficiency becomes the operational hedge.


The Efficiency Imperative

Here’s where the story turns from macro trends into actionable insight. The good news: The same technologies driving smarter AI are also enabling smarter buildings and systems. Intelligent filtration, automation, low-pressure HVAC systems, demand-response strategies — these are the tools to control the energy side of the business.


Here are three reasons why now is the time to focus on performance and efficiency:

  1. Cost Avoidance Becomes Value Creation

    With energy prices under pressure and demand growth uncertain, reducing consumption becomes a direct cost-mitigation strategy.– Efficiency improvements often pay back faster when baseline energy costs are rising.


  2. Grid Risk = Business Risk

    Relying solely on external supply (even if green) is a vulnerability; the more you rely on the grid, the more you’re exposed to spikes, shortages or regulatory premium pricing.– Being energy-efficient gives you more independence and control.


  3. Sustainability Meets Differentiation

    With the global pivot to renewables (for example, the projection that global renewable capacity additions between 2025-2030 will be ~4,600 GW) IEA — the organisations that get ahead now won’t just be “green” — they’ll be efficient green. That matters for brand, operations, risk profile.


When you think about building automation, indoor air quality and HVAC systems, you’re often dealing with the largest energy loads after lighting in a built environment. By focusing on filtration, optimization and smart control, you’re reducing both the peak load and the total energy used, which in the current climate is exactly the kind of strategic leverage organizations need.


  • Yes: the news about renewables overtaking coal is encouraging — that shift shows progress. But it also hides a key truth: demand is increasing fast, thanks in part to data, AI, buildings and more.

  • That means supply-side improvements alone aren’t enough. They must be matched by demand-side discipline (i.e., efficiency).

  • Organizations that act now to optimize their energy consumption will be better positioned, from cost, risk and sustainability standpoints, in the years ahead.


So whether you’re managing a campus, commercial building or industrial facility: don’t wait for the grid to “catch up.” Focus on what you control. Because in this new power era, efficiency is the real currency.



MORE INFORMATION

  • To explore available energy-efficient upgrades and funding programs supporting sustainable building projects, visit our Energy Grants page.


  • Learn how our Pro Filter's are helping organizations reduce energy use and operating costs while improving air quality across their facilities.

Why MERV 13 Filters May Be Straining Your HVAC & What to Do Instead

  • Writer: Ava Montini
    Ava Montini
  • Jul 31
  • 3 min read

In the race to improve indoor air quality (IAQ), MERV 13 filters quickly became the default solution. Backed by ASHRAE recommendations and often mandated for LEED, WELL, and government-funded retrofits—particularly in schools and healthcare settings—they offer fine-particle capture down to 0.3 microns.

And the promise is compelling: better protection against smoke, allergens, pathogens, and pollution.


But what happens when a filter built for high capture also comes with high resistance?


That’s the overlooked issue facilities teams across North America have quietly (and not so quietly) been contending with since the industry-wide pivot to pleated MERV 13 filtration. And it’s exposing a critical gap between policy and practicality.


The Unseen Burden

Pressure Drop and System Strain


ree

MERV 13 filters do deliver on filtration performance. But many commercial buildings weren’t designed with the added pressure resistance these filters introduce. Especially older or heritage buildings. This added strain reduces efficiency and risks long-term operational degradation, especially in decentralized HVAC systems like fan coil units, packaged rooftop units, and older RTUs.


Pressure drop, the measure of air resistance across a filter, directly influences fan performance, motor longevity, and energy consumption. As resistance rises, so does the system’s workload. What’s often missed in blanket retrofit strategies is that denser filters may clean more, but they also constrict more.


Common downstream effects include:

  • Fan overwork, leading to overheating or premature failure

  • Uneven airflow, resulting in occupant discomfort

  • Shorter filter lifespan, increasing maintenance load

  • Higher energy bills, due to compensating fans or longer run times


Peer-reviewed research and government data confirm the operational penalties tied to high-resistance filtration.


  • According to the U.S. Department of Energy, when HVAC systems are not recalibrated or upgraded during a filter retrofit, increased static pressure can lead to a 20–30% rise in fan energy consumption, as fans work harder to maintain airflow under greater resistance.

  • A study presented at the ASHRAE IAQ 2013 conference by Zaatari, Siegel, and Novoselac found that rooftop HVAC units experienced airflow reductions of up to 10% when upgrading from MERV 8 to MERV 13 filters, largely due to increased pressure drop across the filter.

  • In its 2024 Filtration and Air Cleaning Position Document, ASHRAE confirms that increasing filter efficiency (e.g., upgrading to MERV 13 or higher) generally results in higher pressure drop, which can reduce airflow or increase energy consumption—especially in systems not originally designed to accommodate high-efficiency filters.


Despite this, many upgrades were executed rapidly, driven by pandemic urgency and available funding, and not necessarily by holistic HVAC engineering.


Rethinking the Role of the Filter


Not all MERV 13 filters are created equal.


It’s a common misconception that achieving high filtration efficiency must come at the cost of system performance. But advancements in filter design have shown that it’s possible to meet rigorous indoor air quality standards without overburdening HVAC systems.


Instead of relying solely on dense mechanical media that increase resistance, some technologies, such as Blade Air's Pro Filter, use innovative methods, such as electrostatic attraction, to capture fine and ultrafine particles more efficiently.


The benefits of low-pressure filtration approaches are clear:

  • Significantly reduced pressure drop, preserving system balance and efficiency

  • More consistent airflow, even in legacy or decentralized HVAC configurations

  • Lower energy consumption, due to decreased fan effort

  • Extended equipment life, with reduced strain on motors and fans

  • Sustainability gains, with designs that prioritize reusability and waste reduction


As building standards continue to evolve, it's worth reexamining whether the filter in use supports both compliance and long-term operational resilience.


Why Low-Pressure Filtration is Gaining Momentum


Facilities professionals today are tasked with a complex balancing act: maintaining high indoor air quality, advancing energy efficiency, extending equipment lifespan, and meeting evolving occupant expectations, all within constrained budgets.


Yet compliance alone isn’t enough. A filter that meets regulatory standards on paper may still introduce performance issues if it exceeds the mechanical limits of an existing HVAC system.


That’s why low-pressure filtration is gaining traction—not as a compromise but as a more strategic path forward.


These next-generation filtration approaches help building operators:

  • Avoid costly system redesigns or equipment upgrades

  • Reduce the frequency of service disruptions and maintenance interventions

  • Advance broader environmental and ESG goals through energy and waste reductions


Most importantly, they restore decision-making power to facilities teams, offering workable options instead of one-size-fits-all mandates.


Rethinking Retrofit Outcomes


If your facility has seen a rise in operational issues following a filtration upgrade, such as higher energy bills, comfort complaints, or premature equipment wear, you’re not imagining it. These are increasingly recognized as widespread challenges linked to high-resistance filters.


But the solution doesn’t necessarily require reengineering your system.

It starts with reexamining the filter itself, and whether it truly supports the way your building functions.


Because in high-performing buildings, air quality solutions should enhance operations, not compromise them.

Explore expert insights, stay up-to-date with industry events, and gain a deeper understanding of the developments shaping the built environment.

Subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page