top of page

Facility Changes That Drive 80% of Emissions Savings

The overlooked 20% of building strategies can deliver 80% of emissions savings. Here’s how to reset your 2026 baseline.

Ava Montini

Jan 6, 2026

Written by 

Published on

Tags

The 80/20 Pattern in Building Decarbonization


In business, the Pareto principle (the idea that 20% of actions create 80% of results) shows up everywhere. It also applies to the way buildings decarbonize.



Most portfolios still treat carbon reduction as a capital-projects problem: new chillers, new boilers, new equipment. These projects are visible, expensive, and easy to headline in ESG reports. But in practice, the biggest near-term gains lie in the systems that are already running every hour of every day.


According to the U.S. Energy Information Administration, space heating, cooling, and ventilation are among the top energy end-uses in commercial buildings, with ventilation alone consuming nearly 10% of the total building energy. Factor in heating and cooling, and the air systems you already own set the floor for your emissions profile. Industry surveys and guidance reinforce this point: HVAC systems consistently account for approximately 40% of energy use in commercial facilities. A share that shifts by climate zone but remains dominant across the board.


Before you buy new megawatts, make the watts you already use travel a shorter, smarter, more efficient path.


Filtration as a carbon multiplier (not a consumable line item)



Why filtration matters for energy (and CO₂e)

Filters impose a pressure drop; fans work against that resistance. Basic fan/affinity laws tell us that pressure rises with the square of fan speed, and fan power typically scales with pressure/flow requirements. Therefore, adding resistance increases fan energy unless the system compensates by reducing the flow.


On variable-speed systems that maintain flow, peer-reviewed work shows roughly linear fan-power response to added system pressure: a 10% rise in total pressure drop ≈ 10% rise in fan electric power (assumes fan and motor efficiencies roughly constant at operating point). CaEE


Field and lab studies show that higher filter resistance reduces supply airflow and can increase total power (especially as filters load), degrading cooling capacity and forcing longer runtimes. Newer research also documents the compounding effects of filter loading, with heavy clogging cutting net supply airflow by >30%, a textbook example of invisible energy waste. ScienceDirect


Moving up in MERV doesn’t automatically mean higher energy costs. Well-designed filters use optimized media and geometry (like deeper pleats or more surface area) to keep airflow resistance low. Studies have shown that these higher-efficiency filters can have a lower pressure drop than inexpensive MERV 8 pleated filters, especially when systems are properly balanced. In other words, it’s the filter’s pressure profile that matters, not just the MERV number. ScienceDirect


If you can lower your filter pressure drop while maintaining or improving capture, you directly reduce continuous fan energy. One of the few all-hours loads in many facilities. Because fans run whenever you condition or ventilate space, these savings translate cleanly into CO₂e reductions (see Section 5 for the math).


Demand-Controlled Ventilation (DCV)



What DCV does

It modulates outside-air intake based on occupancy (CO₂, people-count, scheduling) to avoid conditioning empty spaces. Codes and standards increasingly require or encourage DCV in high-occupancy areas, with ASHRAE 62.1 updates clarifying when and how ventilation turndown is permitted (including addenda that allow reduction to zero OA during verified unoccupied periods in certain space types). ASHRAE


Across building types and climates, published work shows that DCV control logic achieves ~9–33% HVAC energy savings. Advanced rooftop-unit control packages, which incorporate multi-speed/variable fans, DCV, and smarter economizer control, have delivered double-digit fan and cooling savings, sometimes exceeding 20%. Taylor & Francis Online


Lawrence Berkeley National Laboratory (LBNL) analyses flag that cost-effectiveness depends on the baseline over-ventilation and occupancy patterns; if your current minimums are already close to code, savings shrink. That’s a guidance feature, not a flaw—the point is to measure your baseline VRs before projecting benefits. Energy Technologies Area


DCV is a surgical lever: attack over-ventilation where it exists, prove reductions with trend data, and lock in permanent load reductions; especially valuable in heating-dominated regions where conditioning outside air is expensive in both energy and CO₂e. Energy Codes Guide


Preventative Maintenance


Controls drift, coils foul, dampers stick, sensors mis-calibrate—quietly taxing 5–15% of portfolio energy in many studies. Modern fault detection & diagnostics (FDD) tools and structured maintenance programs quickly recapture that waste. NREL Docs


  1. Coil fouling: Government and academic sources document material energy penalties from dirty coils; some guidance cites compressor energy up to ~30% higher with fouled condensers (case and climate dependent). Even conservative findings confirm meaningful efficiency and capacity degradation. Avoidable with routine cleaning. Energy.gov.au


  2. Economizers & OA paths: Mis-tuned economizers are common and costly; retuning and sensor QA via FDD is repeatedly highlighted in DOE/NREL/PNNL guidance as a top-tier low-cost fix. PNNL


  3. RTU controls refresh: Campaign results and tech briefs demonstrate that advanced RTU control (variable fan, DCV, and economizer optimization) consistently yields energy reductions of more than 20%, with 25–50% reductions cited in certain deployments compared to legacy constant-speed, always-open baselines. Better Buildings Solution Center


Maintenance is mitigation. It’s also Scope 3-friendly: operating equipment at design efficiency extends service life and defers replacements, reducing embodied carbon churn in your capital plan. (See the measurement plan below to make these savings auditable.)


Turning kWh into CO₂e: a quick, defensible method

Your sustainability stakeholders care about tons, not watts. To translate HVAC savings into CO₂e:

  1. Quantify energy from the measure (e.g., fan kWh drop from low-pressure filters; heating/cooling kWh or therms saved from DCV; kWh saved from FDD fixes).

  2. Apply grid or fuel emission factors appropriate to the site(s) and year.

    • U.S. electricity (2022 eGRID avg): ≈ 0.393 kg CO₂/kWh (867.5 lb/MWh delivered). US EPA+1

    • Canada electricity (2025 factors) vary widely by province—e.g., Ontario: 38 g CO₂e/kWh; Alberta: 490 g CO₂e/kWh. Selecting the right regional factor matters. Canada.ca


If a low-pressure filter reduces fan energy by ~300 kWh/year per unit (magnitude depends on hours, fan size, and baseline pressure):

  • U.S. eGRID avg: 300 kWh × 0.393 kg/kWh ≈ 118 kg CO₂e/year per filter.

  • Ontario: 300 kWh × 0.038 kg/kWh ≈ 11 kg CO₂e/year per filter.

This is why portfolios across different grids see very different CO₂e per kWh outcomes. Even when the kWh savings are identical. US EPA


For transparency in ESG filings, reference the EPA eGRID subregion or the Government of Canada tables (or your utility-specific factors) and archive the PDFs used for each reporting year. US EPA


Risk management & IAQ alignment

  • Stay within ASHRAE 62.1 minimums at all times when spaces are occupied. DCV is about right-sizing, not starving air. Updated addenda clarify occupancy-based turndown rules—use them. ASHRAE

  • Filter choices: Seek equal or higher capture with lower ΔP; measure clean and loaded ΔP at your own face velocities. Research shows energy impact depends on filter design and system configuration, not only MERV. ScienceDirect

  • Measurement culture: Treat IAQ and energy as co-optimized objectives by trending PM, CO₂, temperature, and fan power together, so nobody is flying blind.


What this unlocks for 2026 capex

Once you bank the operational tons above, the economics of electrification, heat recovery, and heat pumps improve because you’re sizing for reduced loads. DOE/NREL work on advanced RTU control consistently shows meaningful kWh reductions when variable fans and DCV are layered in—think of these as pre-project multipliers that de-risk later capex. NREL Docs


The Power of the Overlooked 20%

In the rush to decarbonize, it’s tempting to chase the biggest, newest technologies. But the truth is that many of the most reliable carbon savings are already within reach. Hidden in fans, filters, ventilation rates, and maintenance routines.


Filtration, demand-controlled ventilation, and preventative maintenance may not make the headlines, but together they represent the overlooked 20% of actions that can deliver 80% of your emissions savings. They are measurable, repeatable, and scalable across portfolios, exactly the kind of solutions facility leaders need as they enter a new year of climate commitments.

The Unseen Reach of Wildfire Smoke

  • Writer: Ava Montini
    Ava Montini
  • Feb 12, 2025
  • 4 min read

The Smoke We Cannot Escape


Wildfires have long been a force of nature, shaping landscapes and ecosystems for millennia. But in recent years, their intensity and frequency have surged, fueled by rising global temperatures and prolonged drought conditions. The impact of these fires extends far beyond the visible destruction of forests and homes. Their invisible consequence—wildfire smoke—travels thousands of kilometers, infiltrating cities, homes, and even the bodies of people who may never see a flame.


The microscopic particles in wildfire smoke, known as particulate matter (PM), pose one of the greatest health threats from these disasters. They are not just an inconvenience or a temporary blight on air quality; they represent a serious, often underappreciated, global health crisis.


The Anatomy of Wildfire Smoke: What’s in the Air We Breathe?



At first glance, wildfire smoke appears as a dense, ominous haze, carrying with it the distinct scent of burning vegetation. But within that haze lies a complex mixture of gases and tiny particles, many of which are harmful to human health.


Breaking Down Particulate Matter in Wildfire Smoke

Wildfire smoke contains a range of particles of varying sizes, each with distinct effects on human health:


Coarse Particles (PM10)

Particles with diameters of 10 micrometers or smaller. These can cause throat irritation, coughing, and eye discomfort but are typically trapped by the upper respiratory system.


Fine Particles (PM2.5)

Particles 2.5 micrometers or smaller are the most dangerous because they can bypass the body’s natural defense mechanisms, reaching deep into the lungs and even entering the bloodstream (U.S. Environmental Protection Agency, 2023).


Ultrafine Particles (UFPs)

Smaller than 0.1 micrometers, these are even more hazardous as they can infiltrate cells and potentially damage DNA.


The Dangers of PM2.5 Exposure

PM2.5 is particularly concerning due to its ability to cause severe health complications:

  • Lung Damage: Chronic exposure can cause scarring of lung tissue and decreased lung function, particularly in children and elderly populations.

  • Cardiovascular Issues: PM2.5 has been linked to an increased risk of heart attacks, strokes, and hypertension due to systemic inflammation (American Heart Association, 2022).

  • Neurological Effects: Recent studies suggest that PM2.5 particles may cross the blood-brain barrier, potentially contributing to neurodegenerative diseases such as Alzheimer’s and Parkinson’s (National Institute of Environmental Health Sciences, 2023).

  • Cancer Risk: Many PM2.5 particles contain carcinogenic compounds like benzene and formaldehyde, increasing the likelihood of developing lung and other cancers (National Cancer Institute, 2023).


Toxic Chemical Composition

  • Wildfire smoke contains carbon monoxide, volatile organic compounds (VOCs), benzene, formaldehyde, and other carcinogens (World Health Organization, 2022).

  • The exact composition depends on what is burning—trees, vegetation, homes, and even industrial materials can release different toxins.


Smoke Without Borders: The Far-Reaching Effects of Wildfire Pollution



It’s a common misconception that wildfire smoke only affects areas directly adjacent to the fire itself. The reality is much more alarming: smoke travels vast distances, often impacting populations thousands of kilometers away.


In 2023, wildfires in Canada sent smoke as far south as Florida and even across the Atlantic to Europe (NASA Earth Observatory, 2023). This isn’t an isolated event—wildfire smoke from California has been detected in New York, and Siberian wildfires have impacted air quality in Alaska.


Why Does Smoke Travel So Far?

Smoke travels vast distances due to atmospheric transport, where large-scale wind patterns, jet streams, and pressure systems carry it far from its source. High-altitude smoke plumes further contribute to this movement, as intense fires generate their own weather patterns, creating pyrocumulonimbus clouds that inject smoke into the stratosphere, allowing it to spread across continents. Unlike localized pollution sources, wildfire smoke lingers in the atmosphere for weeks, gradually dispersing but remaining hazardous over time.


Strategies for Mitigating Wildfire Smoke Exposure


With wildfires becoming more frequent, protecting against smoke exposure is no longer a seasonal concern—it’s a year-round necessity.


Importance of Filtration and Indoor Air Quality

  • HEPA and Advanced Filtration: Using high-efficiency particulate air (HEPA) filters and low-pressure, high-efficiency filtration technologies can effectively remove PM2.5 and harmful gases from indoor environments.

  • HVAC Integration: Homes, schools, and businesses in wildfire-prone areas should consider upgrading HVAC systems to include electromagnetic and carbon filtration, which can significantly reduce the concentration of wildfire pollutants indoors.

  • Portable Air Cleaners: During wildfire events, having standalone air purifiers with activated carbon and HEPA filters can provide localized air quality improvements, especially in homes without central air filtration.

  • Sealing Indoor Spaces: Proper insulation, window sealing, and positive air pressure systems can prevent outdoor smoke from infiltrating indoor spaces, creating a safer breathing environment.


Individual Actions

  • Stay Informed: Monitor air quality indexes (AQI) through resources like AirNow.gov.

  • Limit Outdoor Exposure: On high-smoke days, reduce outdoor activity, especially for children, older adults, and those with respiratory conditions.

  • Wear Protective Masks: N95 or P100 masks filter out fine particles and are significantly more effective than cloth masks.


A Global Challenge Requiring Collective Action

Wildfire smoke is not a localized problem—it is a planetary issue with far-reaching consequences for public health and the environment. As climate change accelerates, wildfires will only grow in scale and intensity, making it crucial to acknowledge the real risks posed by airborne pollutants and take action to protect communities worldwide.


Understanding wildfire smoke’s movement, composition, and health effects is the first step in mitigating its dangers. While technological advances and policy interventions are essential, awareness and individual preparedness remain our best defense. As we move forward, we must rethink how we manage forests, protect air quality, and safeguard human health in an era where wildfires no longer recognize borders.

Explore expert insights, stay up-to-date with industry events, and gain a deeper understanding of the developments shaping the built environment.

Subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page