top of page

The Hidden Cost of Poor Airflow in High-Performance Commercial Buildings

Poor airflow in commercial buildings leads to higher energy bills, reduced indoor air quality, and HVAC wear. Learn how to identify and solv

Ava Montini

Mar 24, 2025

Written by 

Published on

Tags

Why airflow inefficiencies drive up costs, compromise indoor air quality, and create hidden challenges for facility managers


Most commercial and institutional buildings today are designed with performance and efficiency in mind. Energy benchmarks, ESG goals, and occupant well-being are often front and center. But despite those efforts, one critical element of building performance is consistently underdiagnosed: airflow.


Poor airflow can silently affect every corner of your building’s operations — from higher energy consumption and HVAC maintenance costs to reduced indoor air quality (IAQ) and missed sustainability opportunities. It rarely shows up as a red flag on day one, but over time, it chips away at performance in ways that are both measurable and avoidable.


Inefficient Airflow Increases Energy Use — Even in “Efficient” Buildings

In many commercial buildings, HVAC systems account for roughly 30–40% of total energy consumption, according to Natural Resources Canada and ASHRAE. But when airflow is restricted, that percentage can climb significantly.


The most common culprits are high-resistance filters, dirty or aging ductwork, unbalanced systems, or outdated fans. These conditions increase static pressure, which forces HVAC fans to work harder and longer to achieve required airflow levels.


According to a study by the U.S. National Institute of Standards and Technology (NIST), buildings with airflow-related HVAC issues can see energy use increase by up to 30% compared to optimized systems. [1]


Even minor issues can have an outsized impact. A 100,000 sq. ft. office building experiencing elevated fan energy use due to clogged filters or inefficient duct design could face annual utility costs tens of thousands of dollars higher than necessary. For building owners managing multiple sites, that inefficiency compounds quickly.


Airflow and Indoor Air Quality Are Closely Linked


Buildings are dynamic systems, and air quality tends to suffer when airflow is compromised. Insufficient airflow can lead to poor ventilation, uneven air distribution, and pockets of stagnation in rooms or zones. These areas often experience elevated levels of carbon dioxide (CO₂), volatile organic compounds (VOCs), and particulate matter — especially in high-occupancy spaces.


A 2015 study from Harvard’s T.H. Chan School of Public Health found that employees working in well-ventilated buildings performed 61% better on cognitive tasks than those in typical buildings with poor ventilation and air quality. [2]


In schools, researchers have found that students in classrooms with improved ventilation perform better on standardized tests. [3] In healthcare facilities, inadequate air movement can increase the risk of airborne illness transmission.


Common complaints like “stuffy rooms,” temperature inconsistencies, or fatigue can often be traced back to airflow and ventilation issues — even when temperature setpoints and filtration standards are technically being met.


Poor Airflow Wears Down HVAC Systems Faster


Inefficient airflow costs more on your energy bill and accelerates mechanical wear and tear. When fan motors, compressors, and dampers are forced to operate under continuous load, components degrade faster than expected.


This leads to:

  • More frequent repairs and service calls

  • Shortened equipment lifespan

  • Greater downtime and occupant discomfort during peak seasons


A study from the National Air Duct Cleaners Association (NADCA) notes that air distribution restrictions are a key factor in premature HVAC failure and reduced system capacity. [4]


The cost of replacing a rooftop unit, for example, can range from $10,000 to $25,000, depending on building size and complexity — not including indirect costs from temporary system downtime.


Sustainability Targets Can Be Quietly Undermined


Many facilities today are pursuing ESG goals, LEED certification, or local emissions reduction mandates. But airflow inefficiencies can quietly work against those targets by increasing Scope 2 emissions (energy-related emissions) and filter waste.


High-resistance air filters, mainly traditional pleated filters, can contribute to this in two ways:

  1. Increased energy use due to pressure drop

  2. Frequent changeouts, leading to more waste and landfill contribution


According to a 2021 study in Building and Environment, filter pressure drop is one of the most overlooked contributors to unnecessary HVAC energy use — especially when filters are overused or under-maintained. [5]


If a building claims progress in sustainability, it’s important to ensure that filtration and airflow practices align with those claims—both from an energy and waste standpoint.


Missed Opportunities for Incentives and Cost Recovery


One of the lesser-known downsides of inefficient airflow is the lost opportunity to qualify for energy retrofit incentives.


Many utility and government programs across North America offer rebates, grants, or low-interest financing for businesses upgrading HVAC systems, controls, and low-pressure filtration. But to be eligible, buildings often need to demonstrate quantifiable improvements in system performance.


For example, Ontario’s Save on Energy Retrofit Program offers up to 50% of project costs for energy-efficiency upgrades, including those related to ventilation, air handling units, and demand control ventilation systems. [6]


Without data on airflow improvement or energy reduction — or without addressing underlying airflow inefficiencies — buildings may fail to qualify, leaving funding on the table.


Practical Steps to Address Airflow Challenges


The good news is that improving airflow doesn’t require a major capital project. Many impactful changes can be made within existing operations and maintenance cycles.


Here’s where most facilities can start:

  • Conduct a static pressure and airflow assessment to identify bottlenecks

  • Replace high-pressure filters with low-pressure, high-efficiency alternatives

  • Balance and tune your HVAC system, especially if zones have changed due to new usage patterns

  • Install real-time IAQ monitors to detect issues as they emerge, not after complaints arise

  • Track filter changeouts and energy use to capture data for future incentive applications


These strategies are already being implemented in facilities across North America — and in most cases, they deliver measurable improvements in energy efficiency, equipment reliability, and occupant satisfaction.



Airflow may not be the most visible part of your building, but it’s one of the most influential. When ignored, it quietly drives up energy costs, reduces system lifespan, and compromises air quality.


For facility managers and business owners focused on performance, sustainability, and operational clarity, airflow should be on the radar — not just as a maintenance metric but as a lever for long-term efficiency and resilience.


Addressing airflow challenges is a straightforward, high-ROI step that supports healthier, more cost-effective, and future-ready buildings.

Demystifying Mechanical Ventilation: The Different Types and How They Can Benefit You

  • Writer: Jennifer Crowley
    Jennifer Crowley
  • Jul 31, 2023
  • 2 min read

Updated: Jul 9, 2024

Ceiling vent amidst square floating ceiling tiles
The best system for a particular application will depend on factors such as the size and layout of the building, the number of occupants, and the specific ventilation needs of the space.

Mechanical ventilation is an essential aspect of building design, particularly in modern construction, where structures are designed to be airtight for energy efficiency reasons. Ventilation systems help to improve indoor air quality by controlling the flow of air and moisture in and out of a building, which can have a significant impact on the health and well-being of the occupants.


There are several types of mechanical ventilation systems that are commonly used in buildings. In this blog post, we will explore the four main types of mechanical ventilation: supply ventilation, exhaust ventilation, balanced ventilation, and whole-house mechanical ventilation.

1. Supply Ventilation

Ceiling venting and ductwork
Supply ventilation systems pressurize the building, forcing stale air out of the building.

Supply ventilation is a type of mechanical ventilation system that introduces fresh air into a building through a supply duct. The air is typically filtered to remove pollutants and other contaminants before it is circulated into the building. Supply ventilation systems work by pressurizing the building, which forces stale air out through small cracks and leaks in the building envelope. This can be done using a centralized system, with air being brought in through a single duct and distributed through a series of vents, or through a decentralized system, where individual units are installed in each room or area. This type of system is ideal for buildings located in areas with high levels of outdoor pollution, as it helps to maintain a steady flow of fresh, clean air.


2. Exhaust Ventilation

Exhaust vents connected to a ducting system
Exhaust ventilation creates negative pressure in the building, which draws in fresh air from outside.

Exhaust ventilation is a type of mechanical ventilation system that removes stale air from a building through an exhaust duct. The system works by creating negative pressure in the building, which draws in fresh air from outside through small cracks and leaks in the building envelope. Exhaust ventilation systems are typically used in buildings with high levels of indoor pollutants, such as kitchens and bathrooms. They are also commonly used in conjunction with supply ventilation systems to maintain a balance between the intake and exhaust of air in the building. This can be done using a centralized or decentralized system and is often used in conjunction with supply ventilation to ensure a continuous supply of fresh air.


3. Balanced Ventilation

Dual ventilation ducts, one intake and one exhaust
Balanced ventilation introduces fresh air into a building through a supply duct and removes stale air through an exhaust duct.

Balanced ventilation is a type of mechanical ventilation system that introduces fresh air into a building through a supply duct and removes stale air through an exhaust duct. The system works by maintaining a balance between the intake and exhaust of air, which helps to maintain a steady flow of fresh air into the building. Balanced ventilation systems are ideal for buildings with a moderate level of outdoor pollutants and a relatively constant temperature and humidity level.


4. Whole-house Mechanical Ventilation

Residential house ducting floorplan
In a home, vents and ducts are connected to your HVAC system to ventilate air.

This system is used to change the air in the entire house; it is often used with a central air-conditioning and heating system, which can be either a centralized or decentralized system.


Each type of mechanical ventilation system has its own advantages and disadvantages. The best system for a particular application will depend on factors such as the size and layout of the building, the number of occupants, and the specific ventilation needs of the space.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page