top of page

AI’s Energy Appetite: What Data Centers Mean for the Future of Electricity Prices

Discover how AI-driven data centers are reshaping electricity demand, prices, and why smarter HVAC and efficiency are critical for sustainable growth.

Ava Montini

Jan 27, 2026

Written by 

Published on

Tags

Powering intelligence, shaping energy


Artificial intelligence has gone from “what if” to “what now.” We use it to draft reports, analyze data, streamline workflows, and even generate design ideas. But while the results appear on our screens instantly, what powers them is anything but invisible.


Behind every AI tool is a data center; rows of servers drawing massive amounts of power and generating equally massive amounts of heat. And with AI adoption soaring, those facilities are putting real pressure on our electricity grids.


Bloomberg recently reported that in PJM, the largest U.S. grid, capacity prices jumped sharply as AI-driven data center demand climbed (Bloomberg). For operators, this is a direct hit to energy budgets.


So while AI is exciting, it comes with a new operational reality: efficiency in cooling, airflow, and HVAC isn’t optional. It’s the difference between runaway costs and sustainable growth.


Why AI is different from past computing booms


Previous waves of digital growth (like cloud adoption) drove steady data center expansion. But AI is different. Training large models consumes enormous amounts of energy. The International Energy Agency estimates that data center electricity use could nearly double by 2030 to around 1,000 TWh, roughly equal to Japan’s entire annual consumption (IEA).


And it’s not just training. Inference: the everyday process of users asking questions or running AI tasks is multiplying demand across millions of devices. Goldman Sachs forecasts a 165% increase in data center power demand by 2030, largely due to AI (Goldman Sachs).


Cooling: a hidden energy driver


When people think about data centers, they picture racks of servers. But behind that computing load is another energy giant: cooling.

HVAC, chillers, pumps, and fans often make up 30–40% of total energy use in data centers (U.S. DOE). That means the “support systems” keeping servers at safe temperatures can rival the IT equipment itself in energy demand.


And because these systems run 24/7, even small inefficiencies snowball:

  • A high-resistance filter forces fans to draw extra kilowatts all day, every day.

  • A dirty coil reduces heat transfer, stretching compressor runtimes.

  • A miscalibrated damper throws airflow off balance, raising both costs and emissions.


Clogged filters can cut supply airflow by over 35%, driving higher fan power and cooling loads (MDPI). Others highlight how loaded filters in constant-speed systems directly increase electricity use (University of Texas at Austin).


Now scale that across a hyperscale AI-driven facility. A 3% efficiency penalty may look small on paper, but in practice, it can cost hundreds of thousands of dollars annually and add unnecessary CO₂e to your footprint.


That’s why low-pressure, high-efficiency filtration matters. It cuts resistance without sacrificing capture, reducing fan energy hour after hour. For operators under pressure from rising power prices and sustainability goals, it’s one of the simplest ways to shrink cooling costs while protecting uptime.


Why efficiency pays off more now

Energy savings have always lowered costs. But as grids get stressed and data center demand rises, the value of each saved kilowatt is climbing. Bloomberg recently reported that capacity prices on PJM, the largest U.S. grid, have spiked because of new data center growth (Bloomberg).


In practical terms, this changes the math:

  • A coil cleaning that once took years to pay for itself can now pay back in just a few months.

  • Smarter controls and calibrated ventilation keep you protected when prices swing.

  • Low-pressure filtration quietly reduces fan energy every hour, stacking up bigger savings as electricity prices rise.


The bottom line is that efficiency has become one of the fastest and most reliable ways to control operating costs in an unpredictable energy market.


Building smarter, not just bigger

For operators, the roadmap isn’t a mystery. The tools are already here:

  • Low-pressure filtration to keep fans efficient hour after hour.

  • Adaptive cooling strategies like variable-speed fans, economizers, and containment to right-size energy use.

  • Monitoring-based commissioning and diagnostics to stop efficiency losses before they become routine.

  • Load shifting and grid-aware operations to tap cleaner, cheaper hours of power (IEA).


Every watt counts

As AI expands, data centers will continue to carry a heavier share of global electricity demand. That makes efficiency less of an option and more of an operating requirement.


The lesson is simple: efficiency and reliability are not competing goals. When facilities prioritize both, they not only manage rising energy costs but also reduce their carbon footprint in measurable, reportable ways. AI may be shaping the demand curve, but how operators respond will shape the industry's long-term sustainability.

Exploring the Differences Between Mechanical and Natural Ventilation

  • Writer: Jennifer Crowley
    Jennifer Crowley
  • Jul 31, 2023
  • 3 min read

Updated: Jul 9, 2024

Four rooftop ventilation units emerging from a building roof
In practice, most buildings utilize a combination of both natural and mechanical ventilation systems to balance the pros and cons and achieve optimal Indoor Air Quality (IAQ) and thermal comfort.

Mechanical and Natural ventilation are two different methods for introducing fresh air into a building or space. Both have their own benefits and drawbacks, and the appropriate choice will depend on the specific needs of the space being ventilated.


Mechanical ventilation involves using mechanical means, such as fans and ductwork, to bring fresh air into a space. This type of ventilation is often used in buildings with no windows or spaces where natural ventilation is insufficient. One advantage of mechanical ventilation is that it can be precisely controlled, allowing for precise regulation of temperature, humidity, and air quality. It is also a good option for spaces that need to be kept at a specific temperature or humidity level, such as hospitals or laboratories.


However, mechanical ventilation can be expensive to install and maintain and requires a reliable power source. It can also be noisy, which may be a concern in certain settings.


On the other hand, natural ventilation relies on the movement of air through open windows, doors, or vents to bring fresh air into a space. This type of ventilation is often used in residential buildings and other spaces where windows and doors can be opened to allow air circulation. One advantage of natural ventilation is that it is generally less expensive to install and maintain than mechanical ventilation. It is also typically quieter than mechanical ventilation, as it does not involve mechanical fans or other equipment.


However, natural ventilation is less precise than mechanical ventilation and may not be suitable for spaces that require a specific temperature or humidity level. It is also not ideal for areas that do not have windows or other openings that can be used to bring in fresh air.


Natural ventilation and mechanical ventilation are both methods of controlling the airflow within a building, but they have some key differences in terms of their benefits and drawbacks.

Pros of natural ventilation:

  1. Energy efficient: Natural ventilation systems do not require the use of mechanical equipment, which means they consume less energy and have a lower environmental impact.

  2. Cost-effective: Natural ventilation systems typically have lower upfront costs than mechanical systems and may also have lower maintenance costs over time.

  3. Improved indoor air quality: Natural ventilation helps remove stale indoor air and bring in fresh outdoor air, improving the overall air quality within a building.


Cons of natural ventilation:

  1. Dependent on the weather: The effectiveness of natural ventilation systems can be affected by the weather and may not function as well during periods of high heat, humidity, or low winds.

  2. Limited control: It can be challenging to control and regulate airflow in a natural ventilation system, which can result in uneven temperature and air quality in different parts of a building.

  3. Site and architecture-specific: Natural ventilation might not be suitable for all buildings, especially in urban or high-rise areas or extreme weather conditions, as a well-designed natural ventilation system must be integrated into the architecture and design of the building.


Pros of mechanical ventilation:

  1. Climate independence: Mechanical ventilation systems can operate regardless of weather conditions and provide consistent airflow and temperature control.

  2. Greater control: Mechanical systems can be designed and controlled to provide a specific level of airflow, temperature and humidity, allowing for better indoor environmental quality control.

  3. Suitable for any building type: Mechanical systems can be installed in any building and can be designed to suit the specific needs of the building.


Cons of mechanical ventilation:

  1. Higher energy consumption: Mechanical systems consume energy to power the mechanical equipment needed to circulate air, making them less energy efficient than natural ventilation systems.

  2. Higher upfront costs: Mechanical ventilation systems tend to have higher upfront costs than natural systems and more regular maintenance costs.


In practice, most buildings utilize a combination of both natural and mechanical ventilation systems to balance the pros and cons and achieve optimal Indoor Air Quality (IAQ) and thermal comfort.


In summary, both mechanical ventilation and natural ventilation have their own advantages and drawbacks, and the appropriate choice will depend on the specific needs of the space being ventilated. Mechanical ventilation is generally more precise and can be used to maintain specific temperature and humidity levels, but it is more expensive and requires a reliable power source. Natural ventilation is generally less expensive and quieter, but it is less precise and may not be suitable for certain spaces.

Explore expert insights, stay up-to-date with industry events, and gain a deeper understanding of the developments shaping the built environment.

Subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page