top of page

Flu Season Meets School Season: How Smarter Air Quality Keeps Classrooms Healthy

Every fall, classrooms fill with students—and viruses. Discover how smarter air quality strategies like low-resistance filtration, ventilation, and HEPA keep schools healthier, reduce absences, and support better learning outcomes.

Ava Montini

Aug 19, 2025

Written by 

Published on

Tags

The scene every September

Every September, the school bell rings and hallways come alive again. But as backpacks and lunch boxes make their way back into classrooms, another unwelcome guest tends to sneak in too: flu season.


Teachers know it all too well. The cough that spreads from desk to desk, the hand sanitizer bottles running low by mid-morning, the spike in absenteeism that leaves lesson plans hanging. Parents know it when the inevitable call from the school office comes: “Your child has a fever, please come pick them up.”


It’s a cycle we’ve come to accept as part of the school year. But what if healthier air could help change that story?


Why flu season and school season collide

Respiratory viruses (including influenza) spread more readily indoors, where exhaled particles accumulate. That’s not speculative; CDC/NIOSH is unambiguous that better indoor ventilation reduces occupants’ overall exposure to airborne viruses. CDC


We also know influenza isn’t only about big droplets from a sneeze. People exhale infectious virus in fine aerosols during normal breathing and speaking, which can linger and travel within a room. That was demonstrated in a landmark study that detected infectious influenza virus in exhaled breath from symptomatic adults, no cough required. PNASNature


The drier, colder air from the fall and winter cause low humidity, helping influenza survive and transmit more efficiently. Put simply: when we bring students back into dry, tightly sealed buildings, small airborne particles build up and stay infectious longer. That’s the fixable part.


Think of clean classroom air as a budget with three line items:

  1. Dilute what’s in the room (ventilation/outdoor air)

  2. Remove what’s in the room (filtration/air cleaning)

  3. Disable what’s in the room (UVGI where appropriate)

The key is using them together, sized to the space, and tuned to the school day.


What the standards now say and why it matters

Before the pandemic, most schools designed ventilation systems mainly for comfort—things like controlling odours or keeping CO₂ levels down—not for stopping the spread of illness.


That changed with ASHRAE’s new Standard 241, which focuses specifically on infection control. ASHRAE’s Standard 241: Control of Infectious Aerosols changes the target by introducing Equivalent Clean Airflow (ECA)—a flexible, additive way to hit a per-person clean air goal using any combination of ventilation, filtration, and proven air cleaning. That means a classroom can meet its target by mixing outdoor air with high-efficiency filters, HEPA units, and/or UVGI, rather than relying on outdoor air alone. ASHRAE+1


In parallel, CDC/NIOSH and EPA emphasize practical steps for schools: keep systems maintained, upgrade to MERV-13 or better where equipment allows, and supplement with portable HEPA when central systems can’t carry the whole load. CDC+1Environmental Protection Agency


The evidence that this keeps kids in class

  • In a study of 162 California elementary school classrooms, illness-related absences dropped by 1.6% for every extra 1 l/s‑person of ventilation. Increasing ventilation to meet the state standard (7.1 l/s‑person) from the average (4 l/s‑person) could reduce absences by 3.4%, gain $33 million annually in attendance-based funding, while costing just $4 million more in energy.

  • A study across Washington and Idaho found that a 1,000 ppm increase in indoor CO₂ correlated with a 0.5–0.9% drop in average daily attendance, translating into a 10–20% rise in student absences.

  • In controlled environments, each 500 ppm rise in CO₂ resulted in 1.4–1.8% slower response times, along with a 2.1–2.4% lower throughput on cognitive tasks.

  • Harvard’s COGfx study revealed that building occupants in green-certified, well-ventilated environments scored, on average, 101% higher in cognitive tests than those in conventional buildings. 


“Will MERV-13 break my units?” (The energy/airflow reality)

The honest answer: it depends on the filter you pick and your fan capacity. Research on rooftop units shows that moving from MERV-8 to MERV-13/14 can raise cooling-mode energy use by a few percent if the filter adds a lot of resistance, or it can reduce airflow if the fan can’t keep up. That’s why filter selection matters as much as efficiency.


Not all MERV-13 filters are created equal. Traditional pleated designs often create a higher pressure drop, forcing HVAC systems to work harder and sometimes leading to performance issues. But newer filtration technologies (explicitly engineered for low resistance at high efficiency, like Blade Air's Pro Filter,) are changing that equation. By combining advanced media with optimized form factors, these filters deliver MERV-13 (and higher) performance without the heavy airflow penalty.


California’s Title 24 research reinforces this point: Many modern low-pressure MERV-13 options can maintain pressure drops under 0.20 in. w.c., keeping systems within safe operating ranges. That means schools can improve air quality, meet public health guidance, and stay compliant without sacrificing system efficiency or longevity.


When you factor in the bigger picture—fewer student absences, better cognitive performance, and improved overall school operations—the ROI clearly tilts toward upgrading. Healthier air doesn’t just protect occupants; it protects the bottom line.


How this translates into a classroom target (the ECA idea)

ASHRAE 241’s Equivalent Clean Airflow lets you add up all the ways you’re cleaning air—outdoor air, central filtration, HEPA, UVGI—until you reach the per-occupant target for your space type. It’s flexible, measurable, and avoids unrealistic demands for 100% outdoor air in cold snaps. ASHRAE

A practical approach:

  • Estimate your current outdoor air (from design or testing).

  • Add the “clean air” from MERV-13 upgrades (using published efficiencies) and from each HEPA unit’s clean air delivery rate.

  • If the sum doesn’t meet the ECA target, add another portable unit or rethink your filtration strategy. ASHRAE


What about measurement and transparency?


CO₂ for ventilation

Track a few representative rooms across grade levels and building wings. Persistently high readings during class point to areas needing a fix (dampers, schedules, or supplemental air cleaning). Health Canada’s 1000 ppm residential benchmark is a useful anchor for conversations with families and staff. Canada.ca


PM₂.₅ for smoke days

A couple of low-drift sensors at kid-height in hallways or problem rooms can confirm your filtration strategy keeps indoor levels below outdoors during wildfire events. Health Canada and EPA both recommend this principle. Canada.ca


Bottom line

Flu season doesn’t have to mean higher absence rates and strained HVAC systems. The most effective path is a consistent program: keep ventilation tuned, use filters that balance efficiency with low resistance, and supplement with portable HEPA or UVGI where it makes sense.

Mastering Indoor Grow Room Ventilation: A Comprehensive Guide to Optimal Plant Growth in Tents

  • Writer: Jennifer Crowley
    Jennifer Crowley
  • Jul 31, 2023
  • 4 min read

Updated: Jul 9, 2024

A collection of cannabis plants growing indoors in a tent with a fan prominently in the foreground
Good ventilation allows plants to have access to the fresh air required for photosynthesis.

Having regulated grow room ventilation ensures that your cannabis plants grow in an optimized environment with temperatures and humidity that allow you to grow the most potent buds. Having insufficient airflow through your grow room negatively affects both yield and quality.


In an indoor environment, plants do not have access to the same sort of fresh air as outdoor plants. Ventilation is at the core of ensuring that the air in your grow tent promotes healthy growth. Good ventilation allows plants to have access to the fresh air required for photosynthesis. Additionally, ventilation helps maintain other indoor air quality factors, such as humidity, temperature and CO2.


Why is Grow Tent Ventilation so Important?

Large greenhouse landscape with grow lights overhead
If a plant gets too much CO2, it will slow down or even stop photosynthesis.

The most common grow room systems use a combination of exhaust fans and ducts or pipes to maintain airflow. And circulation fans are used to keep the air flowing within the room.


CO2 management

Like all other green plants, cannabis transforms light energy into chemical energy through a process called photosynthesis. If a cannabis plant does not get enough CO2, it will continue to grow until its stored sugars are depleted. Once that happens, its metabolism decreases, and it will stop growing. On the other hand, if a plant gets too much CO2, it will slow down or even stop photosynthesis. The trick is finding the right CO2 level for a grow space to maximize photosynthesis and yield.


Optimal CO2 concentration

To obtain growth equivalent to outdoor plants, CO2 concentration should be around 400 ppm in an indoor space with normal fresh air ventilation.


Humidity management

Plants are natural humidifiers, so it only makes that a room full of them will require some sort of humidity regulatory tool. Humidity in the grow room is largely a result of transpiration. Transpiration is the process by which the leaves of the plant give off water to the atmosphere. Much like a straw, the suction created by transpiration pulls nutrients up through the roots as the plant produces water vapour.


In the presence of too much humidity, there is a greater chance of attracting insects and other unwanted pesticides. Along with the excess heat, a ventilation system also dumps out the excess moisture in the air. The dry air takes away some of the water from the upper parts of the plant, forcing the plant to absorb more water through the roots, helping the plant absorb more nutrients.


Pest Control

Stagnant or humid air harms various factors in a grow room, including the topsoil. The medium will remain damp or humid in the room of stale air, attracting fungi, mould, mildew and insects. A healthy level of dryness in the topsoil because of a steady supply of dry air helps slow down the growth of pest populations.


Types of Ventilation in a Grow Room

Illustration of the difference in operation of a passive air intake system vs. an active air intake system
The are small, but important differences in how a Passive air intake system works vs. an Active Intake system.

Passive intake uses natural airflow and negative pressure to bring air into the room. Basically, there is a hole or vent in the grow tent that passively allows air to enter. It does this through pressure differences inside and outside the room. This is like if you opened a window to let in air.


Active intake pulls air into the room with a fan. This actively draws in air to ensure high levels of circulation. The size of the active fan doesn’t matter as much as the air pressure blown in. You should use an active fan that pulls in at least the same pressure rate (and CFM) as the exhaust fan.


Carbon Filters help with odour

A carbon filter mounted outside of air ducting.
A carbon filter helps remove the odours from a grow room.

A carbon filter helps remove the odours from a grow room. A good-quality carbon filter is connected to an extraction fan. The fan pulls air through the carbon filter. As this happens, the activated carbon inside the filter chemically absorbs the terpenes (and other aromatic compounds), locking them inside the carbon filter. The fan then pushes the cleaned air out.

Illustration of the options of mounting your carbon filter inside or outside of your tent
Air Pull or Push options for mounting your Carbon Filter

If you are wondering whether your fan should pull or push the air through a carbon filter, in most grow rooms and tents, the carbon filter is installed first while the fan is pulling the air outside.

With this setup, aromatic molecules along with dust and other unwanted VOCs get efficiently filtered to avoid damage to the fan or accumulation in the duct. However, if you are limited in space and cannot fit your carbon filter inside your setup, you are still able to mount the fan on the wall of the tent or room while air is forced through the filter placed outside. Although not ideal, but acceptable. 


Meet the world’s first zero-waste carbon filter.

Close up image of a Blade Air Carbon filter with the various components separated to be able to see the locking mechanisms, canister and filter components
Blade Air's Zero Waste Carbon Filter

Meet Blade Air's Carbon Filter, a zero-waste odour control solution that minimizes facility maintenance time and expenses:

  • Patented revolutionary replaceable carbon cartridge.

  • 56% reduction in operating expenses.

  • Made from 70% recycled materials.

Take advantage of significant time and labour savings to save up to 30% on material costs and up to 80% in labour savings, without compromising odour control performance. Learn more about our Carbon Filter or get in touch to discuss how we can help you improve the indoor air quality in your facility.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page